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Reaction rates

inside the sun:

Luminosity L
⊙

= 2·1039 MeV/s

Q-value         Q = 26.73 MeV
𝑟𝑟⨀ =

𝐿𝐿⨀
𝑄𝑄

= 1038 𝑠𝑠−1

luminosity is the total amount 
of energy produced in a star 
and radiated into space in form 
of E-M radiation per time

in the lab:

ε ~ 10%
Ip ~ mA
ρs ~ mg/cm2

pb < s < nb

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜎𝜎 � 𝜀𝜀 � 𝐼𝐼𝑝𝑝 � 𝜌𝜌𝑠𝑠 � ⁄𝑁𝑁𝑙𝑙𝑎𝑎 𝐴𝐴

even / month < rlab < event / day

signal rate ≥ background rate

cosmic ray flux at the sea level ~ 2·10-2 cm-2 s-1

on a 10 cm2 detector ~ 2000 events / day !!!
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LUNA @ Laboratori Nazionali Gran Sasso

4-50 keV accelerator
p-, α-beams ≤ 1 mA

study of pp-chains
e.g. 3He + 3He

Rock as passive shielding
cosmic ray background 
reduction ~ 10-4
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γ-ray background at Gran Sasso

with lead shielding

much higher suppression factor
than with shielding at surface lab

LUNA
unshielded

LUNA
shielded

surface

NB shielding becomes even more efficient underground
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LUNA’s accelerators

50 kV: LUNA I
3He(3He,2p)4He

d(p,γ)3He

d(3He,p)4He

Energy spread
20 eV

keV/h
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LUNA’s accelerators

400 kV: LUNA II

U = 50 – 400 kV

I ~ 500 μA for protons
I ~ 250 μA for alphas

Energy spread ~ 70 eV

long term stability: 5 eV/h

14N(p,γ)15O          3He(4He,γ)7Be
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LUNA’s accelerators

400 kV: LUNA II
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Nuclear reactions of astrophysical interest at LUNA

LUNA MV
energy range: 200-3500 kV
current: < 1 mA
beam spread: 350 eV
stability: 35 eV/h

This machine will provide not 
only proton and helium (3/4) 
but also 12C+ and 12C++
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Nuclear reactions of astrophysical interest at LUNA

The LUNA experiment
LUNA 50 kV (1992-2001) - solar phase
LUNA 400 kV (2000-2018) – CNO, Mg-Al and Ne-Na cycles, BBN
LUNA MV (since 2018) – Helium burning

LUNA accelerator
• high current
• long term stability
• high energy accuracy

targets
• windowless gas target
• solid target

detectors
• 137% HPGe
• BGO
• Silicon
• NaI
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Two approaches to stellar energies

Extrapolations:

• Measure level gamma widths
• Measure asymptotic normalization constants 

(ANCs)
• Measure cross sections at high energies
• R-matrix fit for each transition

Extrapolations for each transition are 
summed to give the total extrapolated 
cross section at astrophysical energies

Direct Measurement:

• Low laboratory background
• Low ion beam induced background
• High beam intensity
• High detection efficiency

Direct data for the total cross section 
at astrophysical energies
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Underground accelerator – main features

𝜎𝜎 𝐸𝐸 = 𝑆𝑆 𝐸𝐸 � ⁄𝑒𝑒−2𝜋𝜋𝜋𝜋 𝐸𝐸 𝐸𝐸

Low cross section

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜎𝜎 � 𝜀𝜀 � 𝐼𝐼𝑝𝑝 � 𝜌𝜌𝑠𝑠 � ⁄𝑁𝑁𝑙𝑙𝑎𝑎 𝐴𝐴

high beam 
current to 
increase 

reaction rate

long 
measurements to 
collect statistics

𝜎𝜎 𝐸𝐸 = 𝑆𝑆 𝐸𝐸 � ⁄𝑒𝑒−2𝜋𝜋𝜋𝜋 𝐸𝐸 𝐸𝐸

energy stability 
during measurement

small energy 
spread
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Experimental approach

LOG
SCALE 

⇓

direct measurements

E0 Ecoul

Coulomb 
barrier

σ(E)

non-resonant

resonance

extrapolation 
needed !

CROSS SECTION

Er

DANGER OF EXTRAPOLATION !

σ (E) =     exp(-2πη) S(E) E
1 

non resonant 
process

interaction energy E

extrapolation
direct measurement

0

S(E)

LINEAR
SCALE 

S-FACTOR

S(E) = Eσ (E) exp(2πη)

low-energy tail
of broad 

resonance

-Er

sub-threshold 
resonance

measure σ(E) over as wide a range as possible, then extrapolate down to E0!
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Targets

solid CH2 target (plastic material)

 

simple to handle hydrogen depletion
dx ~ 50 - 1000 µg cm-2 non uniformity

melting problems
deuterium contamination

He targets

H targets

solid implanted target

simple to handle low concentration
(n ~ 1015 - 1017 atoms cm-2)

window-confined gas target

windowless gas target

higher concentration background reactions
(depending on pressure) (e.g. on window materials)

higher concentration differential-pumping system
almost background free high pumping speeds
no physical degradation



Hans-Jürgen Wollersheim - 2022

What is measured in the laboratory

reaction yield: Y = Np Nt σ ε

Np = number of projectile ions
typically, stable beam intensities 1014 pps (~100 µA q=1+)

Nt = number of target atoms
typically, 1019 atoms/cm2

σ = reaction cross section (given by nature)
typically, 10-15 barn (1 barn = 10-24 cm2)

ε = detection efficiency
typically, 100% for charged particles

~1% for gamma rays

Y = 0.3-30 counts/year
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Challenges

low cross sections  low yields  poor signal-to-noise ratio 

Beam induced:

- reactions with impurities in the target

- reactions on beam collimators/apertures 

non beam-induced:

- interaction of cosmic muons with detection setup

- charged particles from natural background

- neutron-induced reactions

Sources of background:
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maximising the yield requires:

 improving “signal” 
- high beam currents  

BUT limitations:  charge confinement 
heating effects on target

- thicker, purer targets
BUT limitations:  exponential drop of cross section

high purities difficult + expensive

 reducing “noise” (i.e. background)

 combination of both 
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Main source of background
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 neutrons from (α,n) reactions and fission
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γ-ray background at Gran Sasso

with lead shielding

much higher suppression factor
than with shielding at surface lab

LUNA
unshielded

LUNA
shielded

surface

NB shielding becomes even more efficient underground
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Precision data for solar models

+ CNO

Charged particle reaction cross sections are difficult to measure at astrophysical energies

E0 = 21 keV, σ = 7 ·10-13 barn

E0 = 22 keV, σ = 9 ·10-18 barn
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Laboratory for Underground Nuclear Astrophysics

@ lowest energy: 
σ ~ 9 pb 50 counts/day

R. Bonetti et al.: Phys. Rev. Lett. 82 (1999) 5205

3He(3He,2p)4He

only two reactions studied directly at Gamow peak

@ lowest energy: 
σ ~ 20 fb   1 count/month

LUNA – Phase I: 50 kV accelerator (1992-2001)

investigate reactions in solar pp-chain

d(p,γ)3He

The 2H(p,γ)3He reaction controls the 
equilibrium abundance of solar deuterium
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LUNA – Phase II: 400 kV accelerator (2002-2006)

14N(p,γ)15O

slowest reaction 

in CNO cycle C
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CNO cycle

 solar neutrino flux from CNO reduced by factor 2

 age of globular cluster increased by 1Gy !!

pp-chain
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Example of nuclear reaction rates in stars

12C(p,γ)13N(e+ν)13C(p,γ)14N(p,γ)15O(e+ν)15N(p,α)12C

CNO cycle

C

N

O

13

15

12

13 14 15

6 7 8

CNO isotopes act as catalysts

net result: 4p  4He + 2e+ + 2ν + Qeff Qeff = 26.73 MeV

cycle limited by β-decay of 13N (t ~ 10 min) and 15O (t ~ 2 min)

nucleosynthesis energy production

changes in stellar conditions ⇒ changes in energy production and nucleosynthesis

(p,γ)

(p,α)
(e+ν)

need to know REACTION RATE at all temperatures to determine
ENERGY PRODUCTION and NUCLEOSYNTESIS
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LUNA

Limitations

 produces & accelerates H and He beams

 no deuteron beams allowed

 reactions producing neutrons not allowed

 only direct kinematics studies are possible

Reactions measured so far at or near Gamow region:
3He(3He,2p)4He    1H(p,γ)3He    14,15N(p,γ)15O    3He(4He,γ)7Be  25Mg(p,γ)26Al      
2H(4He,γ)6Li   17O(p,γ)18F    17O(p,α)14N  …

many critical reactions for astrophysics BEYOND current capabilities

!!  new underground facilities are very much needed  !!
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Key open questions

 fate of massive stars (supernovae explosions)?

carbon burning [12C+12C] in advanced stages of stellar evolution

 where and how are heavy elements produced?

neutron sources [13C(α,n)16O and 22Ne(α,n)26Mg] for s-process 

 AGB stars nucleosynthesis, Novae ejecta, Galaxy composition?

Ne, Na, Mg and Al nucleosynthesis [(p,γ) and (p,α) reactions] 

Crab Nebula SN 1054

http://www-tech.mit.edu/cgi-bin/imagemap/Projects/Chemicool/pertable.map
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projects in Europe

Boulby (UK)
Gran Sasso (Italy)
Canfranc (Spain)
Felsenkeller (Germany)

projects elsewhere

DIANA (US)
Andes (Chile/Argentina)
China
India
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Boulby mine

Plymouth

London

Birmingham

Liverpool

Newcastle

Edinburgh

Inverness

Belfast

Dublin

Redcar

Hartlepool

Peterlee

Middlesbrough

Billingham

ton Ay clif f e

Stockton

arlington

Middlesborough

Whitby

Staithes

York

 commercial potash and salt mine
 Cleveland Potash Ltd
 deepest mine in Britain

(850m to 1.3km deep)
European Laboratory for 

Experimental Nuclear Astrophysics
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DIANA

Dual/Dakota/DUSEL Ion Accelerator for Nuclear Astrophysics 
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DIANA design

E=10 keV-3.0 MeV
I=0.5 mA to 10 mA
ρ=1019 prt/cm2

p, α, HI beams
100 x LUNA luminosity

courtesy: M Wiescher



Hans-Jürgen Wollersheim - 2022

Yield and count rate estimate

15N(p,γ)16O3He(α,γ)7Be

increase in luminosity  up to 3 orders of magnitude improvement compared to LUNA

Beam intensity: 10mA, target density 1018 g/cm2 gas jet

courtesy: M Wiescher
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