Outline: Experimental Nuclear Astrophysics

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. LUNA Gran Sasso
- 2. reaction yields
- 3. reactions in solar pp-chain

Reaction rates

inside the sun:

Luminosity $L_{\odot} = 2 \cdot 10^{39} \text{ MeV/s}$ Q-value Q = 26.73 MeV

$$r_{\odot} = \frac{L_{\odot}}{Q} = 10^{38} \, s^{-1}$$

luminosity is the total amount of energy produced in a star and radiated into space in form of E-M radiation per time

 $r_{lab} = \sigma \cdot \varepsilon \cdot I_p \cdot \rho_s \cdot N_{av} / A$

$$\label{eq:loss} \begin{split} \epsilon &\sim 10\% \\ I_p \sim mA \\ \rho_s \sim mg/cm^2 \\ pb < s < nb \end{split}$$

even / month < r_{lab} < event / day

signal rate \geq background rate

cosmic ray flux at the sea level ~ $2 \cdot 10^{-2}$ cm⁻² s⁻¹

on a 10 cm² detector ~ 2000 events / day !!!

LUNA @ Laboratori Nazionali Gran Sasso

Rock as passive shielding cosmic ray background reduction ~ 10⁻⁴

4-50 keV accelerator p-, α -beams $\leq 1 \text{ mA}$

study of pp-chains e.g. ³He + ³He

Background reduction in Gran Sasso Laboratory LNGS (shielding = 4000 m w.e.)

RadiationLNGS/surfaceMuons10-6Neutrons10-3Photons10-1

Hans-Jürgen Wollersheim - 2022

underground halls

γ-ray background at Gran Sasso

NB shielding becomes even more efficient underground

LUNA's accelerators

LUNA's accelerators

400 kV: LUNA II

$$U = 50 - 400 \text{ kV}$$

I ~ 500 μ A for protons I ~ 250 μ A for alphas

Energy spread ~ 70 eV

long term stability: 5 eV/h

$^{14}N(p,\gamma)^{15}O$ $^{3}He(^{4}He,\gamma)^{7}Be$

LUNA's accelerators

400 kV: LUNA II

LUNA MV

energy range: 200-3500 kV current: < 1 mA beam spread: 350 eV stability: 35 eV/h

This machine will provide not only proton and helium (3/4)but also ${}^{12}C^+$ and ${}^{12}C^{++}$

Nuclear reactions of astrophysical interest at LUNA

The LUNA experiment

LUNA 50 kV (1992-2001) - solar phase LUNA 400 kV (2000-2018) – CNO, Mg-Al and Ne-Na cycles, BBN LUNA MV (since 2018) – Helium burning

LUNA accelerator

- high current
- long term stability
- high energy accuracy

targets

- windowless gas target
- solid target

detectors

- 137% HPGe
- BGO
- Silicon
- NaI

Two approaches to stellar energies

Extrapolations:

- Measure level gamma widths
- Measure asymptotic normalization constants (ANCs)
- Measure cross sections at high energies
- R-matrix fit for each transition

Extrapolations for each transition are summed to give the total extrapolated cross section at astrophysical energies

Direct Measurement:

- Low laboratory background
- Low ion beam induced background
- High beam intensity
- High detection efficiency

Direct data for the total cross section at astrophysical energies

Underground accelerator – main features

Experimental approach

measure $\sigma(E)$ over as wide a range as possible, then <u>extrapolate</u> down to E_0 !

What is measured in the laboratory

reaction yield:

$$Y = N_p N_t \sigma \epsilon$$

 N_p = number of projectile ions typically, stable beam intensities 10¹⁴ pps (~100 µA q=1+)

 N_t = number of target atoms typically, 10^{19} atoms/cm²

 σ = reaction cross section (given by nature) typically, 10⁻¹⁵ barn (1 barn = 10⁻²⁴ cm²)

 ε = detection efficiency

typically, 100% for charged particles

~1% for gamma rays

Y = 0.3-30 counts/year

Challenges

low cross sections \rightarrow low yields \rightarrow poor signal-to-noise ratio

Sources of background:

Beam induced:

- reactions with impurities in the target
- reactions on beam collimators/apertures

non beam-induced:

- interaction of cosmic muons with detection setup
- charged particles from natural background
- neutron-induced reactions

maximising the yield requires:

➤ improving "signal"

- high beam currents

BUT limitations:

charge confinement heating effects on target

- <u>thicker</u>, purer targets

BUT limitations:

exponential drop of cross section high purities difficult + expensive

reducing "noise" (i.e. background)

combination of both

Main source of background

natural radioactivity (mainly from U and Th chains and from Rn)
cosmic rays (muons, ^{1,3}H, ⁷Be, ¹⁴C, ...)

 \geq neutrons from (α ,n) reactions and fission

GSI

γ-ray background at Gran Sasso

NB shielding becomes even more efficient underground

Precision data for solar models

Charged particle reaction cross sections are difficult to measure at astrophysical energies

Laboratory for Underground Nuclear Astrophysics

LUNA – Phase I: 50 kV accelerator (1992-2001)

investigate reactions in solar pp-chain

R. Bonetti et al.: Phys. Rev. Lett. 82 (1999) 5205

@ lowest energy: $\sigma \sim 20$ fb → 1 count/month The ${}^{2}H(p,\gamma){}^{3}He$ reaction controls the equilibrium abundance of solar deuterium

(a) lowest energy: $\sigma \sim 9 \text{ pb} \rightarrow 50 \text{ counts/day}$

only two reactions studied directly at Gamow peak

LUNA – Phase II: 400 kV accelerator (2002-2006)

solar neutrino flux from CNO reduced by factor 2

> age of globular cluster increased by 1Gy !!

Example of nuclear reaction rates in stars

cycle limited by β -decay of ¹³N (t ~ 10 min) and ¹⁵O (t ~ 2 min)

CNO isotopes act as catalysts

net result:
$$4p \rightarrow ^{4}He + 2e^{+} + 2\nu + Q_{eff}$$
 $Q_{eff} = 26.73 \text{ MeV}$
nucleosynthesis energy production

changes in stellar conditions \Rightarrow changes in energy production and nucleosynthesis

need to know REACTION RATE at all temperatures to determine ENERGY PRODUCTION and NUCLEOSYNTESIS

LUNA

Reactions measured so far at or near Gamow region:

³He(³He,2p)⁴He ¹H(p, γ)³He ^{14,15}N(p, γ)¹⁵O ³He(⁴He, γ)⁷Be ²⁵Mg(p, γ)²⁶Al ²H(⁴He, γ)⁶Li ¹⁷O(p, γ)¹⁸F ¹⁷O(p, α)¹⁴N ...

Limitations

- \succ produces & accelerates <u>H</u> and <u>He beams</u>
- ➢ no deuteron beams allowed
- reactions producing neutrons <u>not allowed</u>
- > only <u>direct kinematics</u> studies are possible

many critical reactions for astrophysics **BEYOND** current capabilities

!! new underground facilities are very much needed !!

fate of massive stars (*supernovae explosions*)?
<u>carbon burning</u> [¹²C+¹²C] in advanced stages of stellar evolution

 $\succ where and how are <u>heavy elements</u> produced?$ $\underbrace{\text{neutron sources}}_{\text{neutron sources}} [^{13}C(\alpha,n)^{16}O \text{ and } ^{22}Ne(\alpha,n)^{26}Mg] \text{ for s-process} \xrightarrow{\text{certification}}_{\text{neutron sources}} [^{13}C(\alpha,n)^{16}O \text{ and } ^{22}Ne(\alpha,n)^{26}Mg] \text{ for s-process}$

> AGB stars nucleosynthesis, Novae ejecta, Galaxy composition? Ne, Na, Mg and Al nucleosynthesis $[(p,\gamma)$ and (p,α) reactions]

projects in Europe

Boulby (UK) Gran Sasso (Italy) Canfranc (Spain) Felsenkeller (Germany)

projects elsewhere

DIANA (US) Andes (Chile/Argentina) China India

Boulby mine

European Laboratory for Experimental Nuclear Astrophysics

- commercial potash and salt mine
- Cleveland Potash Ltd
- deepest mine in Britain(850m to 1.3km deep)

DIANA

Dual/Dakota/DUSEL Ion Accelerator for Nuclear Astrophysics

GSİ

DIANA design

E=10 keV-3.0 MeV I=0.5 mA to 10 mA ρ =10¹⁹ prt/cm²

p, α, HI beams **100 x LUNA luminosity**

Yield and count rate estimate

Beam intensity: 10mA, target density 10¹⁸ g/cm² gas jet

increase in luminosity \rightarrow up to 3 orders of magnitude improvement compared to LUNA