Outline: Experimental Nuclear Astrophysics

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. Projectile fragmentation
- 2. Isotope separation on line
- 3. Waiting point nuclei
- 4. reactions, masses, radii

Radioactive Ion Beams production methods

Target fragmentation

Random removal of protons and neutrons from heavy projectile in peripheral collisions

Projectile fragmentation

fragmentation invented at LBNL in the 1980's

Radioactive Ion Beams production methods

- ➢ Isotope Separation on Line (ISOL)
- Projectile Fragmentation (PF)
- ➢ in-flight production
- ➢ batch mode production

excellent quality high purity high intensities

😕 limited number of species

different production for different species limited to nuclei with $t_{1/2} \ge 1$ s (allow for diffusion)

(CERN, LLN, ORNL, TRIUMF) (GANIL, GSI, MSU, RIKEN) (ANL, Notre Dame, TAMU) (suitable for long-lived species)

- \bigcirc independent from chemical properties no limitations on $t_{1/2}$ (fast separation)
- typical beam energies too high for NA poorer beam quality (energy, size) possible beam contaminations

M.S. Smith and K.E. Rehm, Ann. Rev. Nucl. Part. Sci, 51 (2001) 91-130

Fast radioactive beams – why?

•	Production by the in-flight
	technique (vs ISOL)

- Chemical blindness
- Shortest half-lives
- Experimental issues
 - Doppler boosted
 - Kinematical focusing
 - Resolution
 - Small energy loss
 - Possible to use thick targets
 - Ions, particles are hard to stop
 - Can use many detectors
 - ion-by-ion tracking

Ranges in silicon	р	⁴⁰ Ar	238 U
10 MeV/u (ISOL + post-acc.)	700 µm	127 μm	107 µm
500 MeV/u (Relativistic in-flight)	63 cm	7.6 cm	1.8 cm

Fast radioactive beams – where?

- GSI since SIS (early 90's)
- Intermediate-energy RIBs (tens of MeV/u) since many years at GANIL, MSU, RIKEN
- Future (and current) facilities
 - RIBF@RIKEN
 - FRIB@MSU
 - FAIR-NuSTAR

The future - FAIR

The Future International Facility at GSI: FAIR - Facility for Antiproton and Ion Research

all elements up to uranium

Next generation

P. Armbruster et al.; Phys. Rev. Letters, Jan. 05

NuSTAR experiments

Nuclear reactions

- Relativistic energies *R3B*
- Cooled beams *EXL*
- High-res. spectroscopy *HISPEC*

Decay properties

- Stopped beams *DESPEC*
- Ground state properties
 - Masses MATS, ILIMA
 - Radii, momenta *LASPEC*

New tools

- Electron RIB scattering *ELISe*
- p-bar RIB collider AIC

super FRagment Separator

Production of exotic nuclei at relativistic energies

Reactions with Relativistic Radioactive Beams

Pygmy resonances and the neutron skin

GSİ

Waiting point at N=82

"..the calculated r-abundance 'hole' in the A \cong 120 region reflects ... the weakening of the shell strength ... below ¹³²Sn " K-L Kratz bottleneck at N=82 waiting point near stability?

¹³⁰Cd – the key isotope at the A=130 peak

climb up the N=82 ladder A~130 "bottle neck"

K.-L. Kratz, Rev. Mod. Astr. 1 1988

Effects of N=82 "shell quenching"

"Shell quenching"

reduction of the spin-orbit coupling strength; caused by strong interaction between bound and continuum states; due to diffuseness of "neutron-skin" and its influence on the central potential

¹³⁰Cd decay spectroscopy

Decay spectroscopy probes shell closures

A. Jungclaus et al., Phys. Rev. Lett 99, 132501 (2007)

8⁺(g_{9/2})⁻² seniority isomers in ⁹⁸Cd and ¹³⁰Cd

A. Jungclaus et al., Phys. Rev. Lett. 99 (2007), 132501

Surprising β -decay properties of ¹³¹Cd

...just ONE neutron outside N=82 magic shell

Experiment: T_{1/2} = 68 ms; P_n = 3.4 %

GSI

The N=82 shell gap

NONE of the mass models predicts the trend correctly!

Enhanced quadrupole and octupole strength in doubly-magic ¹³²Sn

Hans-Jürgen Wollersheim - 2022

GSI

Waiting point lifetimes with fragmentation facilities

Why fragmentation?

- Lifetime measurements can be done with beams from low energy facilities
- But, fragmentation facilities have advantages:
 - Use beams of mixed nuclides--Identification on event by event basis
 - Greater reach toward dripline
 - FAIR, GSI, RIKEN, NSCL <u>and</u> RIA will cover a large part of r-process path

NuSTAR experiments

HISPEC: high resolution in-flight gamma-spectroscopy

- · Excited states in exotic nuclei
 - · Inelastic excitation (EM, hadronic), secondary fragmentation, knock-out
- · Lifetimes and g-factors of short-lived excited states

(evolution of shells and collectivity)

(phase-/shape-transitions & shape coexistence)

(isospin symmetry, pn-pairing)

- Experiments possible with medium-energy beams (50-100 AMeV)
- Broad program for nuclei with A up to ~100

Proton knockout from 304 MeV/u ¹⁴Be

S245@GSI

GSĬ

Going beyond the dripline...

Yu. Aksyutina et al. PLB 666(2008)430

¹H(¹⁴Be,2p)¹³Li

... and even further

GSÍ

¹⁵O(2p, γ)¹⁷Ne in Nuclear Astrophysics: X-ray bursts, rp-process, neutron stars

Cataclysmic binary systems (X-ray bursts): rp-process Görres et al., PRC 51 (1995) 392

Neutron number N

CNO cycle: ... ${}^{14}N(p,\gamma){}^{15}O(\beta^{-}){}^{15}N(p,a)$ ${}^{15}O$ is a waiting point for CNO-cycle breakup: **Heavier elements:** ... ${}^{15}O(a,\gamma){}^{19}Ne(p,\gamma)$... **Alternative (rp):** ... ${}^{15}O(2p,\gamma){}^{17}Ne(\beta^{-}){}^{17}F(p,\gamma)$

continuum states. Grigorenko et al., PLB 641 (2006) 254

Isochronous mass spectroscopy in the ESR

GSI

Scattering of RIB on hydrogen target

M. von Schmid, EXL, Phys. Scr. T116 (2015) 014005

⁵⁶Ni(p,p) scattering distribution

M. von Schmid, EXL, Phys. Scr. T116 (2015) 014005

⁵⁶Ni(p,p) scattering distribution

Diffraction pattern (like for a wave after a single slit), Extract radius of nucleus by fitting theory with parameters.

M. von Schmid, EXL, Phys. Scr. T116 (2015) 014005

Electron capture in hydrogen-like ions

Simple theoretical estimate:

R.B. Firestone, Table of Isotopes, 1996

Gamow-Teller transition $1^+ \rightarrow 0^+$ β^+ to EC branching ratio:

 $\lambda_{\beta+}/\lambda_{EC}$ (neutral atom) ≈ 1

W. Bambynek et al., Rev. Mod. Phys. 49, 1977

S-electron density at the nucleus:

 $|f_s(0)|^2 \propto 1/n^3$

$$P_{EC}(neutral \ atom) \propto 2 \sum 1/n^3 = 2.4$$

$$P_K(H-like) \propto 1 * 1/1^3 = 1$$

$$\lambda_{\beta+}/\lambda_K$$
 (H-like) ≈ 2.4

conclusion: H-like ions should have 41% longer half-life

Electron capture in hydrogen-like ions

G. Audi et al. NPA 729 (2003) 3 $\lambda(neutral) = 0.0034(1) s^{1}$

Decay of fully-ionized ¹⁴⁰Pr: $\lambda_{\beta+} = 0.00172(7) s^{-1}$

Decay of H-like ¹⁴⁰Pr: $\lambda_K = 0.00213(19) \ s^{-1}$

J. Kurcewicz, N. Winckler et al.

Expectation:

 $\lambda_{\beta+}/\lambda_K$ (H-like) ≈ 2.4

Experiment:

 $\lambda_{\beta+}/\lambda_K$ (H-like) = 0.81 (8)

H-like ions decay ~20% faster than neutral atom!!!

Electron capture in hydrogen-like ions

A.V. Gruzinov, J.N. Bahcall, Astroph. J. 490 (1997) 437 Ionization of ⁷Be in the Sun can be ~20-30%

Nucleosynthesis of heavier elements

