Outline: Helium burning

Lecturer: Hans-Jürgen Wollersheim

e-mail: <u>h.j.wollersheim@gsi.de</u>

web-page: <u>https://web-docs.gsi.de/~wolle/</u> and click on

- 1. critical reactions in He-burning
- 2. the 3α reaction as two step process
- 3. ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

The star-gas-star cycle

molecular clouds

star formation

hot bubbles

star-gas-star cycle

supernovae and stellar winds

stellar burning heavy element formation

© 2005 Pearson Education, Inc., publishing as Addison Wesley

He-burning in massive stars

He-burning is ignited on the ⁴He and ¹⁴N ashes of the preceding hydrogen burning phase!

Most important reaction – triple alpha process – $3\alpha \rightarrow 12C + 7.96$ MeV

CNO-cycle

- Dominant source of energy generation in stars heavier than the sun
- What is CNO contribution to energy production in the sun? few %?

ENERGY PRODUCTION E (MeV/g·s)

- CNO abundances in sun certain
- Stellar photospheric metallicity disagrees with helioseismology

10²⁵

10¹⁵

10¹⁰

105

10[°]

10-5

Critical reactions in He-burning

Resonance in Gamow window - C is made !

He burning

- Typical conditions:
 - Temperature: (1-2) 10⁸ K
 - Density: a few $10^2 10^4 \text{ g/cm}^3$
- Net reaction: ⁴He (2α , γ) ¹²C
- <u>fuel:</u> helium
- main products: carbon, oxygen
- ${}^{4}\text{He} + {}^{4}\text{He} \leftrightarrow {}^{8}\text{Be} + \gamma$ ${}^{8}\text{Be} + {}^{4}\text{He} \leftrightarrow {}^{12}\text{C} + \gamma$
- and $^{12}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + \gamma$
- difficulty: lifetime of ${}^{8}\text{Be} \sim 10^{-16} \text{ s}$
 - \rightarrow Hoyle state (resonance in ¹²C at E=7.68 MeV)
- Other products: ^{21,22}Ne, ^{25,26}Mg, ³⁶S, ³⁷Cl, ⁴⁰K, ⁴⁰Ar
- ¹⁴N (α , γ) ¹⁸F (e^+ ,v) ¹⁸O (α , γ) ²²Ne (α ,n) ²⁵Mg

 $kT \sim 8.6 \times 10^{-8} T[K] keV$

CNO-cycle

CNO cycle

 ${}^{12}C(p,\gamma){}^{13}N(e^+\nu){}^{13}C(p,\gamma){}^{14}N(p,\gamma){}^{15}O(e^+\nu){}^{15}N(p,\alpha){}^{12}C$

Cycle limited by β -decay of ¹³N (t ~ 10 min) and ¹⁵O (t ~ 2 min)

CNO isotopes act as catalysts

changes in stellar conditions \Rightarrow changes in energy production and nucleosynthesis

need to know **REACTION RATE** at all temperatures to determine **ENERGY PRODUCTION**

Abundance change and lifetimes

consider reaction

 $1+2 \rightarrow 3$

where 1 is destroyed through capture of 2 and 3 is produced

need to know **REACTION RATE** at all temperatures to determine **NUCLEOSYNTHESIS**

Abundance evolution in stellar core

GSĬ

Reaction rates determined by α cluster state configurations providing strong resonances!

The $(\alpha\alpha\alpha)$ reaction as two step process

T_{1/2}(⁸Be) = 9.7·10⁻¹⁷ s Meghnad Saha Γ_{α} =6.8 eV pure α cluster configuration

Example for ⁸Be equilibrium abundance:

Case of typical He-burning: T=0.1GK \Rightarrow T₉=0.1; ρ =10⁵ g/cm³

Resonant capture on ⁸Be

The resonance strength

$$\omega \gamma = \frac{\Gamma_{\alpha} \cdot (\Gamma_{\gamma} + \Gamma_{e^+e^-})}{\Gamma_{\alpha} + \Gamma_{\gamma} + \Gamma_{e^+e^-}}$$

$$\Gamma_{\alpha} = 8.09 \pm 1.08 \, eV$$

$$\Gamma_{\gamma} = 3.58 \pm 0.5 \, meV \quad \frac{\Gamma_{rad}}{\Gamma_{tot}} = 4.12 \cdot 10^{-4}$$

$$\Gamma_{e^+e^-} = 60.6 \pm 3.9 \, \mu eV$$

$$\omega \gamma = 3.58 \cdot 10^{-9} \, MeV \quad \pm 12\%$$

The ⁸Be+ α reaction rate

How did they do the experiment?

- Used a deuterium beam on a ¹¹B target to produce ¹²B via a (d,p) reaction.
- ^{12}B β -decays within 20 ms into the second excited state in ^{12}C
- This state then immediately decays under alpha emission into ⁸Be
- Which immediately decays into 2 alpha particles

So they saw after the delay of the β -decay 3 alpha particles coming from their target after a few ms of irradiation

This proved that the state can also be formed by the 3 alpha process ...

→ removed the major roadblock for the theory that elements are made in stars
→ Nobel Prize in Physics 1983 for Willy Fowler (alone !)

The total $<\alpha\alpha\alpha$ rate

$$\begin{aligned} r_{\alpha\alpha\alpha} &= N_{^{8}Be} \cdot \rho \cdot \frac{X_{\alpha}}{A_{\alpha}} \cdot N_{A} \left\langle {}^{8}Be(\alpha, \gamma)^{12}C \right\rangle \\ \text{Step 1} \\ & N(^{8}Be) = 6 \cdot 10^{-35} \cdot N_{\alpha}^{2} \cdot T_{9}^{-3/2} \cdot e^{\left(\frac{-1.068}{T_{9}}\right)} \\ & N_{A} \left\langle {}^{8}Be(\alpha, \gamma)^{12}C \right\rangle = 126.4 \cdot (T_{9})^{-3/2} \cdot e^{-\left(\frac{3.331}{T_{9}}\right)} \\ & r_{\alpha\alpha\alpha} = \frac{1.26 \cdot 10^{-56}}{1 + \delta_{\alpha\alpha}} \cdot N_{\alpha}^{3} \cdot T_{9}^{-3} \cdot e^{\left(\frac{-11.605(0.092 + 0.278)}{T_{9}}\right)} \\ & r_{\alpha\alpha\alpha} = 1.38 \cdot 10^{15} \cdot \rho^{3} \cdot \left(\frac{X_{\alpha}}{4}\right)^{3} \cdot T_{9}^{-3} \cdot e^{\left(\frac{-4.294}{T_{9}}\right)} \quad [cm^{-3}s^{-1}] \end{aligned}$$

Example: $\rho = 10^5 \text{ g/cm}^3$

T-dependent main energy source for stellar He-burning

- Typical conditions:
 - Temperature: (6-8) 10⁸ K
 - Density: 10⁵ g/cm³
- Net reaction: ${}^{12}C + {}^{12}C$
- <u>fuel:</u> carbon
- main products: neon, magnesium, oxygen
- ${}^{12}C + {}^{12}C \rightarrow \alpha + {}^{20}Ne \quad (Q = 4.62 \text{ MeV})$
- ${}^{12}C + {}^{12}C \rightarrow p + {}^{23}Na$ (Q = 2.24 MeV)
- other reactions: ${}^{23}Na + p \rightarrow \alpha + {}^{20}Ne$ ${}^{20}Ne + \alpha \rightarrow {}^{24}Mg$
- ${}^{12}C + \alpha \rightarrow {}^{16}O + \gamma$ conversion of ⁴He into ¹²C and ¹⁶O

Uncertainty in low energy extrapolation

Reaction contributions in ${}^{12}C(\alpha,\gamma){}^{16}O$

$^{12}C(\alpha,\gamma)^{16}O$ reaction rate

$$N_{A} \langle \sigma \upsilon \rangle = 6.9 \cdot 10^{8} \cdot T_{9}^{-2/3} \cdot S_{eff} [MeV - b] \cdot e^{-\frac{32.11}{T_{9}^{1/3}}} \left[\frac{cm^{3}}{s}\right]$$

$$S_{eff} \approx 0.17 \left[MeV - b \right]$$

$$N_A \langle \sigma \upsilon \rangle \approx 1.2 \cdot 10^8 \cdot T_9^{-2/3} \cdot e^{-\frac{32.11}{T_9^{1/3}}} \left[\frac{cm^3}{s}\right]$$

Only very crude estimate! E-T dependency needs to be considered!

The role of neutrino-losses

• At temperatures above ~ 10^9 K: pair-production

 $\gamma \leftrightarrow e^+ + e^- \leftrightarrow \nu_e + \bar{\nu}_e$

• Luminosity of photons and neutrinos

- Typical conditions:
 - Temperature: (1-2) 10⁹ K
 - Density: 10⁶ g/cm³
- Reactions: ${}^{20}Ne + {}^{20}Ne \rightarrow {}^{16}O + {}^{24}Mg + 4.59 \text{ MeV}$
- <u>fuel:</u> neon
- main products: oxygen, silicon
- 20 Ne (γ, α) 16 O
- other reactions:

²⁰Ne
$$(\alpha, \gamma)$$
 ²⁴Mg (α, γ) ²⁸Si (α, γ) ³²S
²¹Ne (α, n) ²⁴Mg (n, γ) ²⁵Mg (α, n) ²⁸Si
²³Na (α, p) ²⁵Mg (α, n) ²⁸Si
²⁵Mg (p, γ) ²⁵Al
²³Na (p, α) ²⁰Ne

Why would neon burn before oxygen?

Temperatures are sufficiently high to initiate photodisintegration of ²⁰Ne

 ${}^{20}Ne + \gamma \rightarrow 160 + \alpha \ {}^{16}O + \alpha \rightarrow 20Ne + \gamma \ equilibrium is established$

 $kT \sim 8.6 \text{ x } 10^{-8} \text{ T}[\text{K}] \text{ keV}$

Photodisintegration

- Typical conditions:
 - Temperature: (1.5-2.2) 10⁹ K
 - Density: 10⁷ g/cm³
- Reactions:
- <u>fuel:</u> oxygen
- main <u>products</u>: silicon, sulfur (90%)
- ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{32}\text{S}^* \rightarrow p + {}^{31}\text{P}$ (56%, Q = 7.676 MeV)
- ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{32}\text{S}^* \rightarrow \alpha + {}^{28}\text{Si}$ (34%, Q = 9.593 MeV)
- ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{32}\text{S}^* \rightarrow n + {}^{31}\text{S}$ (5%, Q = 1.459 MeV)
- other reactions:

```
<sup>31</sup>P (p,\alpha) <sup>28</sup>Si
<sup>33</sup>S (e<sup>-</sup>,\nu) <sup>33</sup>P
<sup>35</sup>Cl (e<sup>-</sup>,\nu) <sup>35</sup>P <sup>25</sup>Mg (p,\gamma) <sup>25</sup>Al
<sup>23</sup>Na (p,\alpha) <sup>20</sup>Ne
```


- Typical conditions:
 - Temperature: (3-4) 10⁹ K
 - Density: 10⁹ g/cm³
- Net reaction: ²⁸Si + ²⁸Si
- <u>fuel:</u> silicon
- main <u>products</u>: Fe-group elements (A = 50-60 nuclei)
- other reactions: ${}^{28}\text{Si} + \gamma \rightarrow p + {}^{27}\text{Al}$ ${}^{28}\text{Si} + \gamma \rightarrow \alpha + {}^{24}\text{Mg}$ ${}^{28}\text{Si} + \gamma \rightarrow n + {}^{27}\text{Si}$
- Balance between forward and reverse reactions for increasing number of processes: a + b ↔ c + d → Nuclear Statistical Equilibrium (NSE)

 $kT \sim 8.6 \times 10^{-8} T[K] keV$

Stellar evolution

Main parameters governing evolution: initial mass & initial chemical composition

GSI

Summary stellar burning

	Stage	Time Scale	Temperature (T_9)	Density (g cm ⁻³)
>0.8M₀ ↓↓ >8M₀ >12M₀	Hydrogen burning	$7 \times 10^{6} \text{ y}$	0.06	5
	Helium burning	5×10^5 y	0.23	7×10^{2}
	Carbon burning	600 y	0.93	2×10^{5}
	Neon burning	1 y	1.7	4×10^{6}
	Oxygen burning	6 months	2.3	1×10^{7}
	Silicon burning	1 d	4.1	3×10^{7}
	Core collapse	seconds	8.1	3×10^{9}
	Core bounce	milliseconds	34.8	$\simeq 3 \times 10^{14}$
	Explosive burning	0.1-10 s	1.2-7.0	Varies

TABLE 8.1 Evolutionary Stages of a 25 M_o Star^a

Why do timescales get smaller?

Note: Kelvin-Helmholtz timescale for red supergiant ~10,000 years,

so for massive stars, no surface temperature - luminosity change for C-burning and beyond

... and nucleosynthesis

Nuclear processes in stars

Standard Abundance Distribution (SAD) vs. A

