Rotations for Deformed Shapes

The pure liquid drop model has a stable equilibrium only for spherical surfaces. As a consequence of quantum mechanics - i.e. shell effects - it can happen that the nucleus has a permanent deformation. We shall restrict ourselves to axial symmetric deformations of an even-mass nucleus (see fig. 1) which should also be invariant with resept to a rotation of 180° about the 2 -axis. In this case the nucleus can only rotate around an axis perpendicular to the symmetry axis.

Figure 1: Energy spectrum (left) and shape (right) of an axial symmetric rotator.

Before we will investigate these rotations, we have to parametrize the deformed nuclear surface. One possibility is

$$
\begin{equation*}
R=R(\theta, \phi)=R_{0}\left(1+\beta_{0}+\beta_{2} Y_{20}(\theta, \phi)+\beta_{4} Y_{40}(\theta, \phi)+\ldots\right) \tag{1}
\end{equation*}
$$

where R_{0} is the radius of the sphere with the same volume and $Y_{\lambda 0}(\theta, \phi)$ are the spherical harmonics. The expansion (Eq. 1) contains only even values of λ, with β_{2} and β_{4} being the quadrupole and hexadecapole deformation parameters, respectively. Since we require that the nuclear volume is kept fixed for all deformations, we get

$$
\begin{equation*}
\beta_{0}=-\frac{1}{4 \pi}\left(\left|\beta_{2}\right|^{2}+\left|\beta_{4}\right|^{2}+\ldots\right) \tag{2}
\end{equation*}
$$

The rotational spectrum is given by

$$
\begin{equation*}
E_{I}=\frac{\hbar^{2}}{2 \mathcal{J}} I(I+1)+E_{K=0} \tag{3}
\end{equation*}
$$

with the band head $E_{K=0}$ and the moment of inertia \mathcal{J}. If we consider the motion of an irrotational liquid that is held in a nonspherical shape, which is rotated uniformly, the moment of inertia is given by

$$
\begin{equation*}
\mathcal{J}_{i r r}=\frac{9}{8 \pi} A M R_{0}^{2}\left(\beta_{2}^{2}+\frac{5}{3} \beta_{4}^{2}\right) \tag{4}
\end{equation*}
$$

It differs from the moment of inertia of a rigid body with the same deformation

$$
\begin{equation*}
\mathcal{J}_{\text {rig }}=\frac{2}{5} A M R_{0}^{2}\left(1+\sqrt{\frac{5}{16 \pi}} \beta_{2}+\sqrt{\frac{9}{16 \pi}} \beta_{4}\right) \tag{5}
\end{equation*}
$$

For the reduced transition matrix elements (Eq. ??) to the first excited states we find

$$
\begin{equation*}
<2^{+}\|M(E 2)\| 0^{+}>=\sqrt{\frac{5}{16 \pi}} Q_{20} e \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
<4^{+}\|M(E 4)\| 0^{+}>=\sqrt{\frac{9}{16 \pi}} Q_{40} e \tag{7}
\end{equation*}
$$

where the intrinsic quadrupole moment Q_{20} and intrinsic hexadecapole moment Q_{40} is calculated for a uniform charge distribution in the liquid-drop model up to second order

$$
\begin{equation*}
Q_{20}=\frac{3 Z R_{0}^{2}}{\sqrt{5 \pi}}\left(\beta_{2}+0.360 \beta_{2}^{2}+0.967 \beta_{2} \beta_{4}+0.328 \beta_{4}^{2}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{40}=\frac{Z R_{0}^{4}}{\sqrt{\pi}}\left(\beta_{4}+0.411 \beta_{4}^{2}+0.983 \beta_{2} \beta_{4}+0.725 \beta_{2}^{2}\right) \tag{9}
\end{equation*}
$$

Energy-B(E2) Product In the irrotational flow model the energy-B(E2) product for a pure quadrupole deformation is given by

$$
\begin{equation*}
E_{2^{+}} B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)=\frac{1}{5}\left(\frac{3 Z e R^{2}}{4 \pi}\right)^{2} \beta_{2}^{2} \frac{\hbar^{2}}{2 \mathcal{J}_{\text {irr }}} 6 \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{J}_{i r r}=\frac{9}{8 \pi} A M R_{0}^{2} \beta_{2}^{2} \tag{11}
\end{equation*}
$$

Thus, we get for the rotational energy-B(E2) product,

$$
\begin{equation*}
E_{2^{+}} B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)=5.7510^{-4} \frac{Z^{2}}{A^{1 / 3}} \mathrm{MeV} e^{2} \text { barn }^{2} \tag{12}
\end{equation*}
$$

which is a factor of 2.5 smaller than the vibrational energy- $\mathrm{B}(\mathrm{E} 2)$ product (Eq. ??). However, the experimental product of the energy and $\mathrm{B}(\mathrm{E} 2)$-value reaches only $17-19 \%$ of the rotational limit.

For the other intraband E2-transitions we find

$$
\begin{equation*}
<I+2, K=0| | M(E 2) \| I, K=0>=\sqrt{\frac{3(I+2)(I+1)}{2(2 I+3)}} \sqrt{\frac{5}{16 \pi}} Q_{20} e \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& <I, K=0\|M(E 2)\| I, K=0>=-\sqrt{\frac{I(I+1)(2 I+1)}{(2 I-1)(2 I+3)}} \sqrt{\frac{5}{16 \pi}} Q_{20} e \tag{14}\\
& \quad<I-2, K=0\|M(E 2)\| I, K=0>=\sqrt{\frac{3 I(I-1)}{2(2 I-1)}} \sqrt{\frac{5}{16 \pi}} Q_{20} e \tag{15}
\end{align*}
$$

For the static M1 and E2 moments we obtain

$$
\begin{gather*}
\mu(I)=g_{R} \mu_{N} I \tag{16}\\
Q(I)=-\frac{I(I+1)}{(I+1)(2 I+3)} Q_{20} \tag{17}
\end{gather*}
$$

The quantity g_{R} is the effective g -factor for the collective motion; it is again expected to be of the order of $g_{R} \sim Z / A\left(\mu_{N}=\frac{e \hbar}{2 M c}\right)$.

