
Surface Oscillations around a Spherical Shape

In the simplest version of the vibrational model one assumes that the nucleus
has spherical symmetry in its ground state and that the excited states are due
to harmonic oscillations of the nuclear surface. The spectra of the harmonic
quadrupole (λ = 2) and octupole (λ = 3) oscillator is shown in fig. 1.

Figure 1: Harmonic energy spectra for the quadrupole (left) and octupole
(right) surface oscillations.

In the harmonic approximation, the phonon states E(nλ) are energetically
degenerated in spin I and are equally spaced with respect to nλ

E(nλ+1)−E(nλ) = h̄ωλ (1)

with the frequencies

ωλ =

(
Cλ
Bλ

)1/2

(2)

where Bλ is the inertia parameter and Cλ is the stiffness parameter. Both
parameters can be calculated if the collective motion of nucleons in nuclei can
be described as the irrotational flow of a fluid. In this classical model the two
parameters are given by

Bλ =
3AMR2

0

4πλ
(3)

Cλ = (λ− 1)[(λ+ 2)R2
0σ −

3Z2e2

2π(2λ + 1)R0
] (4)

where the surface tension σ=1.1 MeV/fm2 can be calculated from the
semi-empirical mass formula (atomic mass unit M=931.478 MeV/c2). From
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the structure of the wave functions and the multipole operators the follow-
ing mode-dependent selection rules for the reduced transition probabilities and
static moments can be deduced: a) the multipolarity of the allowed electric
transitions is equal to the phonon multipolarity, b) electric transitions can only
occur between states with nλ − nλ′ = ±1 and all static electric multipole mo-
ments are zero, c) all magnetic dipole transitions are forbidden. Thus the only
nonvanishing M1 matrix elements are

< nλI||M(M1)||nλI >=

√
3

4π
gRµN

√
I(I + 1)(2I + 1) (5)

The quantity gR is the effective g-factor for the collective motion; it is
expected to be of the order of gR ∼ Z/A (µN = eh̄

2Mc).

For a shape vibration of the order λ = 2 and a uniform charge distribution,
the reduced transition matrix element (Eq. ??) connecting the 1-phonon state
with the ground state is given by

< I = 2, n2 = 1||M(E2)||I = 0, n2 = 0 >=
√

5 Qvib e (6)

where the quantity Qvib is calculated in the liquid-drop model

Qvib =
3ZR2

4π

√
h̄

2B2ω2
(7)

Energy-B(E2) Product It should be noted that the vibrational model
predicts a strong correlation between the B(E2) value of the first 2+ state and
its energy E2+ = h̄ω2.

E2+ B(E2; 2+ → 0+) = (
3ZeR2

4π
)2 h̄2

2B2
(8)

with

B2 =
3AMR2

0

8π
(9)

Thus, we get for the vibrational energy-B(E2) product,

E2+ B(E2; 2+ → 0+) = 1.44 10−3 Z2

A1/3
MeV e2barn2 (10)

Experimentally, a similar relation has been found for all the nuclei through-
out the nuclear table. However, the product of the energy and B(E2)-value
reaches only 7-8% of the vibrational limit.

The nonvanishing matrix elements to the 2-phonon quadrupole states are

< I = 4, n2 = 2||M(E2)||I = 2, n2 = 1 >=
√

18 Qvib e (11)

< I = 2, n2 = 2||M(E2)||I = 2, n2 = 1 >=
√

10 Qvib e (12)
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< I = 0, n2 = 2||M(E2)||I = 2, n2 = 1 >=
√

2 Qvib e (13)

For the transitions to the 3-phonon quadrupole states we obtain

< I = 6, n2 = 3||M(E2)||I = 4, n2 = 2 >=
√

39 Qvib e (14)

< I = 4, n2 = 3||M(E2)||I = 4, n2 = 2 >=

√
90

7
Qvib e (15)

< I = 4, n2 = 3||M(E2)||I = 2, n2 = 2 >=

√
99

7
Qvib e (16)

< I = 3, n2 = 3||M(E2)||I = 4, n2 = 2 >=
√

6 Qvib e (17)

< I = 3, n2 = 3||M(E2)||I = 2, n2 = 2 >= −
√

15 Qvib e (18)

< I = 2, n2 = 3||M(E2)||I = 4, n2 = 2 >=

√
36

7
Qvib e (19)

< I = 2, n2 = 3||M(E2)||I = 2, n2 = 2 >=

√
20

7
Qvib e (20)

< I = 2, n2 = 3||M(E2)||I = 0, n2 = 2 >=
√

7 Qvib e (21)

< I = 0, n2 = 3||M(E2)||I = 0, n2 = 2 >=
√

3 Qvib e (22)

For the static moments we obtain

Q(n2, I) = 0 (23)

µ(n2, I) = gRIµN (24)
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