Single-Particle Transition (Weisskopf Estimate)

For an electric single-particle transition we assume excitation of only one proton in an average central potential that changes its orbit from j_{i} to j_{f}. A magnetic transition takes place when the intrinsic spin is flipped, i.e., $j_{i}=\ell_{i} \pm$ $1 / 2 \rightarrow j_{f}=\ell_{f} \mp 1 / 2$, respectively. For a magnetic transition the multipolarity λ is given by $\left|j_{i}-j_{f}\right|=\lambda$ and $\left|\ell_{i}-\ell_{f}\right|=\lambda-1$.

A useful scale of $B(E \lambda)$ - and $B(M \lambda)$-values are the Weisskopf units which allow a rough estimate of the number of nucleons contributing to radiation. For a transition from an excited state I_{i} to the ground state $I_{g s}$ we find in the electric ($\mathrm{E} \lambda$) and magnetic ($\mathrm{M} \lambda$) case

$$
\begin{align*}
& B\left(E \lambda ; I_{i} \rightarrow I_{g s}\right)=\frac{(1.2)^{2 \lambda}}{4 \pi}\left(\frac{3}{\lambda+3}\right)^{2} A^{2 \lambda / 3} e^{2}(f m)^{2 \lambda} \tag{1}\\
& \quad B\left(M \lambda ; I_{i} \rightarrow I_{g s}\right)=\frac{10}{\pi}(1.2)^{2 \lambda-2}\left(\frac{3}{\lambda+3}\right)^{2} A^{(2 \lambda-2) / 3} \mu_{N}^{2}(f m)^{2 \lambda-2} \tag{2}
\end{align*}
$$

For the first few values of λ, the Weisskopf estimates are

$$
\begin{gather*}
B\left(E 1 ; I_{i} \rightarrow I_{g s}\right)=6.446 \quad 10^{-4} A^{2 / 3} \quad e^{2}(\text { barn }) \tag{3}\\
B\left(E 2 ; I_{i} \rightarrow I_{g s}\right)=5.94010^{-6} A^{4 / 3} \quad e^{2}(\text { barn })^{2} \tag{4}\\
B\left(E 3 ; I_{i} \rightarrow I_{g s}\right)=5.94010^{-8} A^{2} e^{2}(\text { barn })^{3} \tag{5}\\
B\left(E 4 ; I_{i} \rightarrow I_{g s}\right)=6.28510^{-10} A^{8 / 3} e^{2}(\text { barn })^{4} \tag{6}\\
B\left(M 1 ; I_{i} \rightarrow I_{g s}\right)=1.790 \quad\left(\frac{e \hbar}{2 M c}\right)^{2} \tag{7}
\end{gather*}
$$

