Outline: Transfer Reactions

Lecturer: Hans-Jürgen Wollersheim

e-mail: h.j.wollersheim@gsi.de

web-page: https://web-docs.gsi.de/~wolle/ and click on

- 1. direct reactions
- 2. Q-values
- 3. theories: DWBA, Fresco, Faddeev
- 4. radioactive beams
- 5. Knock-out reactions (¹¹Li)

Why reactions?

Elastic:

Traditionally used to extract optical potentials, rms radii, density distributions

Inlastic:

Traditionally used to extract electromagnetic transitions or nuclear deformations.

Transfer:

Traditionally used to extract spin, parity, spectroscopic factors example: ¹³²Sn(d,p)¹³³Sn

Traditionally used to study two-nucleon correlations and pairing example: 11Li(p,t)9Li

Breakup:

Reactions types

If we consider nuclear reactions where both projectile and target are nuclei, many subcases arise. In the following table we show them by means of examples:

Reaction	Type	
$^{59}\text{Co}(d,d)^{59}\text{Co}$	Elastic	The projectile is captured
$^{59}\text{Co}(d, d')^{59}\text{Co}^*$	Inelastic	with a gamma ray emission.
$^{59}\mathrm{Co}(\mathrm{d},\gamma)^{61}\mathrm{Ni}$	Radiative Capture	
59 Co(d,p) 60 Co	Stripping	One (or more) nucleon(s) is(are)
$^{59}\mathrm{Co}(\mathrm{d,n})^{60}\mathrm{Ni}$	Stripping	stripped from the projectile.
59 Co(d, 3 He) 58 Fe	Pickup	
$^{59}\mathrm{Co}(\mathrm{d},\alpha)^{57}\mathrm{Fe}$	Pickup	One (ore more) nucleon(s) is(are) stripped from the target.

Reactions: tool to excite and probe nuclear states

Selectivity of direct reactions

direct reactions with nuclei

- Elastic & inelastic scattering
- Few-particle transfer (stripping, pick-up)
- Charge exchange
- Knockout

Transfer reactions

Transfer reactions are direct reactions which link entrance channel a, A and exit channel b, B

- ❖ direct reactions: short time scale $(10^{-22} \le \Delta t \le 10^{-20})$
- cross section related to transition amplitude / matrix element $\sigma \propto |\langle i \| \hat{o} \| f \rangle|^2$

```
Q-value = masses (before) – masses (after)

= M_a + M_A - M_B - M_b (in energy units)*

Q-value > \mathbf{0}: exothermic (exoergic)

Q-value < \mathbf{0}: endothermic (endoergic)

Q-value = \mathbf{0}: elastic scattering
```


Transfer reactions

 \bullet determine Q-value by measuring the beam energy T_a , the kinetic energy of the light particle T_b , and the scattering angle θ

$$Q = T_b \cdot \left(1 + \frac{m_b}{m_B}\right) - T_a \cdot \left(1 + \frac{m_a}{m_B}\right) - 2\sqrt{\frac{m_a \cdot m_b}{m_B^2} T_a T_b} \cdot \cos\theta$$

- * and from this the excitation energy of the ejectile, missing mass technique
- traditionally done at 10-20 MeV
- measurement of θ and T_b with magnetic spectrometer
- \bullet example $^{16}O(d,p)^{17}O$
- done extensively in the past with deuteron beams from tandem accelerators
- tritium beams for two-neutron transfer reactions

Measuring transfer reactions – good kinematics

Transfer reactions in normal/forward kinematics (light beam on heavy target) is using a magnetic spectrometer

Momentum-analyze the reaction products

Measure the position at which the particles hit the focal plane → tell us how easily bent in the magnetic field gives the rigidity (momentum/charge)

Reconstruct excitation energy with two-body kinematics

Can also do this with solid-state detectors e.g. silicon arrays

Q₃D spectrometer (formerly) at Munich. The edges of the pole pieces and the multiple correct the kinematic aberrations

²⁰⁸Pb (d,p) ²⁰⁹Pb

²⁰⁸Pb (d,p) ²⁰⁹Pb stripping reaction population of neutron states

²⁰⁸Pb (d,p) ²⁰⁹Pb

²⁰⁸Pb (d,p) ²⁰⁹Pb stripping reaction

population of neutron states

Angular distributions of different reaction channels look different

Transfer reactions: DWBA distorted wave Born approximation

Transfer cross section in DWBA

$$\frac{d\sigma_{\alpha\beta}}{d\Omega} = \sum_{n\ell j} S_{n\ell j} \frac{d\sigma_{\alpha\beta}}{d\Omega} |_{n\ell j}$$

Analysis of experiments:

- 1) measure $d\sigma/d\Omega$
- 2) calculate $d\sigma/d\Omega$ single particle
- 3) extract $S_{n\ell j}$ by normalization of theo. vs exp.
- 4) compare to $S_{n\ell j}$ from theoretical structure model or use in the Baranger sum rule for ESPEs

Angular distribution examples

 Consider the deuteron stripping reaction ⁹⁰Zr(d,p) for a 5MeV deuteron

- $p_d = \sqrt{2m_d E_d} \approx 140 MeV$
- The reaction Q-value and excitation energy of the recoil nucleus are much less than the incoming deuteron energy, so , so $p_p \approx p_d \approx 140 MeV$
- Note that $p^2 = p_a^2 + p_b^2 2p_a p_b \cos(\theta) = (p_a p_b)^2 + 2p_a p_b (1 \cos(\theta))$
- So, $p \approx \sqrt{2p_a p_b (1 \cos(\theta))}$ and it's still true that $p = l\hbar/R$
- Meaning, $l \approx \frac{c}{\hbar c} R \sqrt{2p_a p_b (1 \cos(\theta))}$
- For this case $l = \frac{c}{197 MeV fm} r_0 90^{1/3} \sqrt{2(140 MeV/c)(140 MeV/c)(1-\cos(\theta))} \approx 8 \sin(\frac{\theta}{2})$
- I.e. l=0 at 0° , l=1 at 14° , etc.
- This of course is a classical estimate, what it really tells us is the angle θ_l at which the angular distribution for a given l transfer will peak

.

Angular distribution examples

Probing occupation of levels

- measure energy of levels and determine their occupation
- ❖ (d,p) transfer reaction to add a neutron

Y. Uozumi et al., Nucl. Phys. A576 (1994) 123

Probing occupation of levels

- measure energy of levels and determine their occupation
- (d,p) transfer reaction to add a neutron
- map valence space above a magic number

Y. Uozumi et al., Nucl. Phys. A576 (1994) 123

Intuitive view of spectroscopic factors

Spectroscopic factor: the square overlap of a final state with a single particle state

$$S_k^{n\ell j +} = \langle \Psi_k^{A+1} | a_{n\ell j}^+ | \Psi_0^A \rangle^2$$

Pick-up, exp: ⁴⁴Ca(d,p)⁴⁵Ca

$$S_k^{n\ell j -} = \langle \Psi_k^{A+1} | a_{n\ell j} | \Psi_0^A \rangle^2$$

Stripping, exp: ⁴⁴Ca(p,d)⁴³Ca

Intuitive view of spectroscopic factors

Spectroscopic factor: the square overlap of a final state with a single particle state

$$S_k^{n\ell j +} = \langle \Psi_k^{A+1} | a_{n\ell j}^+ | \Psi_0^A \rangle^2$$

Pick-up, exp: ⁴⁴Ca(d,p)⁴⁵Ca

$$S_k^{n\ell j -} = \langle \Psi_k^{A+1} | a_{n\ell j} | \Psi_0^A \rangle^2$$

Stripping, exp: ⁴⁴Ca(p,d)⁴³Ca

Real (correlated) ⁴⁴Ca nucleus

In reality: 0 < SF < 1

Theory of transfer reactions

Assume the following:

- Entrance and exit channels dominated by elastic scattering
- ***** Transfer is weak treat as **first-order perturbation**
- Transfer proceeds directly between two channels
- Direct transfer into the final state with no other rearrangement of the core

Theory of transfer reactions

Calculations

This book

has all the gory details and, tells you how to use the code FRESCO, which is mainly for coupled-channels, but can do DWBA as well

Radioactive beams

heavy beam of nucleus of interest impinges on a light target

Knockout reactions ¹¹Li – neutron halo nucleus

- fast projectile mass A collides with light target
- \diamond mass (A-1) residues are detected
- \diamond light fragments are unobserved, final state tagging by γ -ray if needed
- sudden approximation:

$$\vec{k}_3 = \frac{A-1}{A} \cdot \vec{k}_A - \vec{k}_{A-1}$$

momentum of the stuck nucleon k_3 is related to the residues k_{A-1}

- two components in the transverse momentum distribution of ⁹Li residues
- broad like for stable nuclei
- very narrow component→ removal of weakly bound neutrons
- uncertainty relation

$$\frac{\Delta p \cdot \Delta x}{\text{small} \to \text{large}} \ge \hbar$$

Measurement of the reaction cross section

- ❖ 800 MeV/u ¹¹B primary beam
- Fragmentation
- * FRagment Separator FRS

test of the extended wave function

momentum distribution:

- wider momentum distribution for strongly bound particles
- narrow momentum distribution for weakly bound particles

interpretation:

One can simplify ¹¹Li by describing it as a ⁹Li core plus a di-neutron

One can use the arguments of an extended wave function with an exponential decline:

$$S_{2n}$$
=250(80) keV

$$\Psi(r) \propto \frac{e^{-\kappa r}}{r}$$

$$\kappa^2 = \frac{2 \cdot \mu_{2n} \cdot S_{2n}}{\hbar^2}$$

Discovery of halo nuclei

Momentum distribution of ¹¹Li

⁶He distribution from ⁸He similar to Goldhaber model

⁹Li distribution from ¹¹Li (**very narrow**!) uncertainty principle

$$\frac{\Delta p \cdot \Delta x}{\text{small} \to \text{large}} \ge \hbar$$

wider distribution is similar to Goldhaber model

Knockout typical result: 12Be

A. Navin et al., Phys. Rev. Lett. 85, 266 (2000)

Reducing the many body to a few body problems

- isolating the important degrees of freedom in a reaction
- keeping track of all relevant channels
- connecting back to the many-body problem
 - effective nucleon-nucleus interactions (or nucleus-nucleus) (energy dependence/non-local)
 - many body input

Reaction methods; comparing CDCC with Faddeev

CDCC continuum discretized coupled channels

Appendix: nuclear kinematics

Laboratory system $A_1 + A_2 \rightarrow A_3 + x$

$$E_{\rm lab} = \frac{m_{\rm N}A_{\rm l}}{2}\,v_{\infty}^2 \qquad E_{\rm c.m.} = \frac{A_{\rm l}}{A_{\rm l} + A_{\rm l}}\,E_{\rm lab} = \frac{\mu}{2}\,v_{\infty}^2 \qquad \mu = \frac{A_{\rm l}A_{\rm l}}{A_{\rm l} + A_{\rm l}}$$

Center of mass system

$$\begin{split} A_{\!_1}v_{\!_1} &= A_{\!_2}v_{\!_2} \qquad v_{\!_1} = \frac{A_{\!_2}}{A_{\!_1} + A_{\!_2}}v_{\!_\infty} \qquad v_{\!_2} = \frac{A_{\!_1}}{A_{\!_1} + A_{\!_2}}v_{\!_\infty} \\ U_{\!_{cm}} &= \frac{A_{\!_1}v_{\!_1}^{lab} + A_{\!_2}v_{\!_2}^{lab}}{A_{\!_1} + A_{\!_2}} = \frac{A_{\!_1}}{A_{\!_1} + A_{\!_2}}v_{\!_\infty} \text{ - velocity of the center of mass} \end{split}$$

$$\begin{array}{ll} \text{Laboratory system:} & \tan\theta_3^{lab} = \frac{v_3\sin\theta}{v_3\cos\theta + U_{cm}} = \frac{\sin\theta}{\cos\theta + \frac{U_{cm}}{v_3}} \\ \text{Elastic scattering:} & v_3 = v_1 = \frac{A_2}{A_1 + A_2}v_\infty; \ \frac{U_{cm}}{v_3} = \frac{A_1}{A_3}; \ \tan\theta_3^{lab} = \frac{\sin\theta}{\cos\theta + A_1/A_2} \\ A_1 = A_2 \Rightarrow \tan\theta_3^{lab} = \frac{1}{2}\theta \end{array}$$