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Abstract: Blectric quadrupole and hexadecapole transition matrix elements were measured for
180N, 154Gd and *%6Gd in Coulomb excitation experiments with “*He projectiles. The mea-
sured excitation probabilities are analyzed in the framework of the rotation-vibration coupling
model. The following reduced E2 and E4 transition matrix elements are obtained for 13°Nd,
154Gq and !%6Gd, respectively: (2*||M(E2)|[0*) = 1.650-£0.012 e b, 1.958-:0.011 ¢ b,
2.142:+0.020 e+ b; and <4*||MEH][0*> = 0.3012:96 e-b2,0.6470-05 e- b2, 041112 ¢ - b2
Previous Coulomb excitation experiments performed in this laboratory are also
this model and yield the following results for 152Sm and !34Sm, respectively: <2*|| M(E2)j0+>
= 1.864+0.017 e+ b, 2.07240.010 ¢ - b; and {4*||M(E4)||0*> = 0.46-10.08 ¢ - b3, 0.57+0.09
e b3 Charge deformation parameters, 8; and S, are deduced from the measured transition
moments.

NUCLEAR REACTIONS 13°Nd(a, «’), E = 11.5 MeV, 13%136Gd(x, «’), E = 11.8
E MeV; measured (E,s, 160°); deduced reduced matrix elements <2+||M(E2)|/0*>,
(4*||M(E4)||0*> and charge deformation parameters 3,, f.

1. Introduction

The Coulomb excitation process has been frequently used to measure precisely
quadrupole and hexadecapole moments of even deformed nuclei in both the rare
earth and actinide regions of the periodic table 1 ~1). In such experiments the exci-
tation probabilities of the 2* and 4* ground-band rotational levels are usually deter-
mined by either detecting the elastically and inelastically scattered projectiles or by
measuring the decay y-rays. The data analysis is performed by calculating the 2* and
4% excitation probabilities by means of a suitable theory of Coulomb excitation as a
function of all E2 and E4 matrix elements which connect the various levels. By
comparison of the calculated excitation probabilities with experiment the reduced
transition matrix elements My, = {2*||M(E2)|| 0t) and My, = {4*||M(E4)|[0*)
are determined. These matrix elements may then be used to deduce quadrupole (8,)
and hexadecapole (8,) deformation parameters.

t Supported by the Bundesministerium fiir Forschung und Technologie.
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Over a range of nuclei in both the rare earth and actinide region the rigid-
rotor model has been successfully used to relate the EA matrix elements
My = (LIIM(BAL) (A = 2,4) to Mo, thus leaving the two quantities M, and
M, to be determined from experiment. In the transition region (N s 90), however,
where the rotation-vibration coupling is strong and the nuclei behave like *“‘soft”
rotors, the rigid-rotor description is not applicable and a model should be employed
which takes the rotation-vibration mixing into account.

In this paper we report the results of Coulomb excitation measurements of E2 and
and E4 transition matrix elements in the transitional nuclei '3°Nd, !52Sm, 154Sm,
134Gd and 3°Gd. It will also be shown that relative ground-band E2 matrix ele-
ments in these nuclei as calculated within the framework of the rotation-vibration
coupling model are in excellent agreement with results from recent experiments.
Preliminary results were reported earlier '2).

2. Experimental procedure

The experiments were performed by bombarding thin (10-20 ug/cm?) turgets of
150N, 134Gd, and **Gd with e-particles from the University of Frankfurt Van de
Graaff accelerator. The beam energy was chosen to be 11.5 and 11.8 MeV for the
150Nd and 134 156Gd targets, respectively. The isotopic abundance: of the target
material used was > 96 % for 13°Nd and !*4Gd, while the enrichment of the 13¢Gd
target was 93.6 9. Elastically and inelastically scattered «-particles were detected
0, = 160° with a cooled Si surface-barrier detector. The energy resolution was
typically 19 keV, FWHM. A spectrum resulting from the *34Gd(«, «’) reaction is
shown in fig. 1. '
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Fig. 1. Energy spectrum of 11.8 MeV a-particles scattered from 1#4Gd.
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The excitation cross section for the 2+ state was determined by means of a computer
code which separated the 2* and 0* peaks in a self-consistent iterative procedure
assuming identical peak shapes. Simultancously the intensities were corrected for the
known impurities in the target material. The cross section of the 4 state was subse-
quently obtained by fitting a fourth-order polynomial to the background above and
below the 4* peak. The statistical uncertainty associated with the 2* intensity is
approximately 1.5 %, while the 4* cross section is believed to be accurate to within
3-4%. _

Other states at higher excitation energies than the 2* and 4* ground-band levels
were also measured in our experiments, as can be seen in fig. 1. Among the higher
states are the 2% y-vibrational, 0* and 2t g-vibrational, and the 3~ octupole vibra-
tional levels. Spectroscopic information on the vibrational states seen in the present
experiment, together with results from previous work performed in this labora-
tory 7° ®) will be given in a future publication !3).

3. Analysis and discussion

To obtain the reduced matrix elements My, = (2%||M(E2)|[0*) and M, =
{4%||M(E4)||0*) from the experimental data the Coulomb excitation cross sections
of the 2* and 4* ground-band rotational states were calculated by means of a quantum
mechanical coupled channel code 4). Included in these calculations were all E2 and
E4 matrix elements which connect the 0*, 2+ and 4* levels of the ground band.
Higher states, i.e the 6* ground-band level, the 8- and y- vibrational states, as well as
the 3~ octupole level are found to have very little influence on the excitation probabil-
ities of the 2* and 4* ground-band rotational states and are neglected in the calcu-
lations.

To compute the reduced E2 and E4 matrix elements for the transitional nuclei
studied here and relate them to M, and M, respectively, a nuclear model must be
used which takes account of the rotation-vibration interaction found in these nuclei.
The E2 matrix elements were calculated employing both the rotation-vibration model
(RVM) of Faessler and Greiner 1*) and the Davydov-Ovcharenko model *%). For
1528m, the RVM calculations were performed by using the parameters g = 32.2
keV, E, = 1039.4 keV, E, = 684.6 keV, while in the Davydov model parameters
p = 0.37 and y = 11.5° were used 7).

Appropriate parameters were used for the other nuclei studied. In fig. 2 (upper left
display), the calculated ground-band B(E2) values in !32Sm, normalized to the
B(E2; 2* — 0%) value, are compared with experimental data !®). The B(E2) values
calculated from the rotation-vibration model are labeled RVM-1. Both the RVM-1
and the Davydov model yield B(E2) values that agree better with experiment than
do the corresponding rigid-rotor values. It is seen, however, that the theoretical
B(E2) values tend to be systematically larger than the experimental values. Similar
results are obtained for **4Sm, !54Gd and !%°Gd, but are omitted from fig. 2 for
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Fig. 2. The B(E2) values between ground-band rotational states in rare earth nuclei.

clarity. For **°Nd no ground-band B(E2) values other than B(E2; 2+ — 0*) have
been availabe to us.

In the case of the RVM-1 the observed deviations between theory and experiment
may be due to two approximations made: (i) the charge distribution of the nucleus
has been assumed to be homogeneous, and (ii) terms higher than quadratic have been
neglected in the expansion of the nuclear surface in terms of the quadrupole defor-
mation parameter §,. These higher-order terms contribute about 2 9 to the reduced
E2 matrix element, while particularly the <(4*||M(E2)||2*) element is often deter-
mined experimentally to within ~~ 19. Since the hexadecapole matrix element
{4*||M(EA)|[0*) to be deduced from the present Coulomb excitation study is very
sensitive to small changes in the two-step E2 strength, it appears to be desirable to
improve the model calculations. Therefore, we have recalculated the E2 matrix
clements within the framework of the rotation-vibration model. By expressing the
transition matrix elements in terms of three ‘‘intrinsic’ matrix elements, which may
be obtained from experiment, the above-mentioned approximations in the RVM are
avoided. Details of our calculations are given in the appendix. The B(E2) values cal-
culated in this way for 152Sm, 134Sm, 34Gd and '*%Gd are compared with experi-
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mental data *®~29) in fig. 2. As can be seen, these calculations (labeled RVM-2) are

in excellent agreement with the data.

Since the calculated excitation cross section of the 4* rotational state is insensitive
to changes in the various E4 matrix elements, the rigid-rotor formula is used to relate
all the hexadecapole matrix elements to Mo, = {4*||M(E4)]|01).

TABLE 1

Reduced transition matrix elements and charge deformation parameters in rare earth nuclei

Isotope  <2+||M(E2)||0*> <4||MEM|[0+)> Fermi charge distr.*)  Homogeneous charge distr.*)
(e b) (e- b?)
B Ba J: Ba
150 +0.06 +0.006 10.019 +0.006 40.019
Nd 1.6504:0.012 0301006 02677000 o053ty 02410%0¢ 0.054t201
153§me)  1.864-0.017 0.46-0.08 027810007 0g8+0.023 550, 0,006 0.088--0.023
—0.006 —0.024
156 o +0.008 +0.025 0.007 0.104--0.024
Sm®)  2.07240.010 0.5740.09 02991008 01057002 02680007
15 40.06 +0.006 +0.016 +0.006 +0.015
*Gd 1.958-0.011 0641006 02681000 0.1307 301 02401008 0.12910013
156 +0.12 +0.014 +0.033 +0.013 40.031
Gd 2.1424-0.020 041012 0312 09%  0.055T00% 02801001 0.0561 001
%) ro = 1.1 fm, g = 0.6 fm.
®) ro = 1.2 fm.
°) Ref. ).

The quadrupole and hexadecapole transition matrix elements obtained from the
present study are listed in table 1. We find good agreement of our E2 and E4 matrix
elements with previous results ! > 3 6) In these earlier analyses the deviation of the
B(E2) values from the rigid-rotor prediction was taken into account by incorporating
a “stretching” parameter for the nucleus !52Sm, while for !4Sm the rigid-rotor
relationships were used to calculate the E2 matrix elements. Hexadecapole moments
for the Gd isotopes have not thus far been studied by other authors. Also shown in
table 1 are quadrupole (8,) and hexadecapole (f,) deformation parameters deduced
from the reduced matrix elements (cf. the appendix) by using the relationship

(K =0,n, =0,ny =0[M'(EA,0)|K = 0,n, = 0,n, = 0)
= JlP('s B2, 34)")’ 10(0)d. ¢))

The integral (1) was solved numerically for 4 = 2 and 4 assuming two different
models for the charge distribution. For a homogeneous charge density

o bp) = 07 IR @)
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where the charge surface
.R(O) = Ro [1 +ﬂ2Yz°(0)+ﬂ‘Y4o(0)]. (3)
For the Fermi charge distribution the following form was used:
p(r, B2, Bs) = pol1+exp ((r—R(8))/a)]™". Q)

The integral (1) was normalized by adjusting p, to give the total nuclear charge
Ze = [p(r, B, B4)dt, while both the radius parameter R, and the diffuseness a were
held constant. For the Fermi distribution the radius was taken to be Ry = 1.14% fm
and the diffuseness @ = 0.6 fm, while for the homogeneous charge density R, = 1.2

A* fm was used.
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Fig. 3. Comparison between experimental S, values obtained for a Fermi charge distribution
(ro == 1.16 fm, g == 0.66 fm) and the calculations of ref. 2') (dashed lines).

In fig. 3 the B, deformation parameters obtained for rare earth nuclei by Coulomb
excitation measurements are summarized. To facilitate comparison with the theo-
retical values of Gtz et al. 31), the nuclear radius was taken to be Ry = 1.164* fm
and the diffuseness g = 0.66 fm.

The authors wish to thank Prof. W. Greiner and Prof. W. Scheid for stimulating
discussions. Thanks are also due to the Hochschulrechenzentrum Frankfurt for
providing the computing time necessary for the time consuming calculations.
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Appendix

In this appendix we outline the derivation of the reduced E2 matrix element be-
tween ground-band rotational states in the transitional nuclei studied in this work.
The rotation-vibration model of Faessler and Greiner !%) is used which includes the
coupling of the ground state with both the K* = 2* y-vibrational and X* = 0t g-
vibrational degrees of freedom. The mixed wave function is expressed by

Fd
|IMEnyngy= A,(I)IIMO00) + A5(I)|IM200) + A5(I).IMOOL), (A1)

where the amplitudes 4,(7) are given in terms of the three rotation-vibration param-
eters 8, E, and E;, of ref. '%). The unperturbed wave function is given by

+
M Ennoy = (2257 - ) QL+ (=)D IKnzno). (A2)
K

Here, |Kn;no) denotes a vibrational state characterized by oscillator quantum
numbers 7, (no = 1 for the X* = 0* f-vibration) and n, (1, = O for the X* = 2*
y-vibration). For the ground state n, = n, = 0. The calculation of the reduced E2
matrix element is now straightforward. Transforming the E2 operator M(E2) to the
body-fixed coordinate system and using the Wigner-Eckart theorem one obtains the
E2 matrix element between ground-band states in terms of ““intrinsic” interband and
intraband matrix elements:

AIM(B2)IIT,Y = 25+ T{A,(I) A, (I,(I,200]1,0)<000]M’(E2, 0)[000)
+ A4,(I)A;(I)\/2(1,22 - 211,0)<000|M’(E2, —2)|200)
+ A, (Ir)A5(1,)X(1,200|1,0)<000] M'(E2, 0)|001)
+Ax(I A, (1)J2(1,20211,2)<200|M"(E2, 2)|000)
+ A;(Ir) A, (1)X1,220]1,2)¢200|M’(E2, 0)[200)
+ A5 (Ip)A5(1)\ 2(1,202] ,2)<200] M*(E2, 2)|001)
+ A3 (I)A4, (1,)(11200]1,0)<001| M’ (E2, 0)|000)
+ A3 (1) A5 1)V 2(1,22 - 2| 10)<001 IM'(E2, —2)]200)
+ A5(I)A5(1,)(1,200]1,0)<001|M'(E2, 0)[001)}, (A3)

where the quantities (,AKi4K]/;K;) are Clebsch-Gordan coefficients. Eq. (A.3) can
be simplified considerably by using the recent experimental results 24 %) that for the
nuclei studied in this work the quadrupole moments in the ground state, the K* = 0*
B-vibrational and K™ = 2* y-vibrational states are equal. Moreover, since 4,(1) < 1
and 43(J) < 1, contributions from transitions between the - and y-vibrational states
can be neglected. Therefore, the reduced E2 matrix element can be written in terms
of three “intrinsic’ matrix elements, i.c. {000|M"(E2, 0)/000), <000|M"(E2,—2)|200)
and {000|M"(E2, 0)|001), which, in turn, are obtained from the experimentally
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measured quantities B(E2; 0}, — 2., ), B(E2; O, — 27) and B(E2; O], — 2;).
In fig. 2, the B(E2) values calculated from eq. (A.3) are compared with experimental
results obtained for 132Sm, 134Sm, 134Gd and '%°Gd.
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