Gamma-ray spectroscopy II

Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr

Lectures presented at the IoP Nuclear Physics Summer School September 4 – 17, 2005 Chester, UK

Outline

First lecture

- \succ Properties of γ -ray transitions
- Fusion-evaporation reactions
- Germanium detector arrays
- Coincidence technique
- > Nuclear deformations
- Rotation of deformed nuclei
- > Pair alignment
- Superdeformed nuclei
- > Hyperdeformed nuclei
- Triaxiality and wobbling

Second lecture

- Angular distribution
- Linear polarization
- Jacobi shape transition
- Charged-particle detectors
- Neutron detectors
- Prompt proton decay
- Recoil-decay tagging
- Rotation and deformation alignment

Third lecture

- Spectroscopy of transfermium nuclei
- Conversion-electron spectroscopy
- Quadrupole moments and transition rates
- Recoil-distance method
- Doppler shift attenuation method
- Fractional Doppler shift method
- Magnetic moments
- Perturbed angular distribution
- Magnetic Rotation
- Shears Effect

Fourth lecture

- Fast fragmentation beams
- Isomer spectroscopy after fragmentation
- ➢ E0 transitions
- > Shape coexistence
- ➤ Two-level mixing
- Coulomb excitation
- Reorientation effect
- ISOL technique
- Low-energy Coulomb excitation of ⁷⁴Kr
- Relativistic Coulomb excitation of 58Cr
- ➢ Gamma-ray tracking
- > AGATA

 \Rightarrow compare experimental R_{DCO} with values for dipole-dipole, dipole-quadrupole, quadrupole-quadrupole cascades

 \Rightarrow often sufficient for spin assignments

$$R_{DCO} = \frac{I(\gamma_1, \theta_1; \gamma_2, \theta_2)}{I(\gamma_1, \theta_2; \gamma_2, \theta_1)}$$

Andreas Görgen saclav

dapnia

Ŕ

Angular distribution

Alignment of angular momentum after fusion-evaporation reaction:

$$W(\vartheta) = 1 + \sum_{k} A_{k} P_{k}(\cos \vartheta)$$

The coefficients A_k depend on

the multipolarity L
 the mixing parameter δ
 the population width σ

$$A_{k}(L,L',I_{f},I_{i}) = \rho_{k}(I_{i})\frac{1}{1+\delta^{2}} \Big[F_{k}(L,L,I_{f},I_{i}) + 2\delta F_{k}(L,L',I_{f},I_{i}) + 2\delta^{2}F_{k}(L',L',I_{f},I_{i})\Big]$$

$$\rho_k(I_i) = \sqrt{2I_i + 1} \sum_{m=-I}^{+I} (-1)^{I_i - m} \langle I_i m I_i - m | k 0 \rangle P(m)$$

Ferentz-Rosenzweig coefficients

$$F_{k}(L,L',I_{f},I_{i}) = (-1)^{I_{f}+I_{i}-1} \sqrt{(2L+1)(2L'+1)(2I_{i}+1)(2k+1)} \begin{pmatrix} L & L' & k \\ 1 & -1 & 0 \end{pmatrix} \begin{cases} L & L' & k \\ I_{i} & I_{i} & I_{f} \end{cases}$$
Clebsch-
Bacah

 σ/I is approximately constant (for a given reaction). Normalize to transition with known multipolarity, e.g. 2⁺ \rightarrow 0⁺

dapnia CCC saclay Gordan

Example: Angular distribution with EUROBALL

saclay Andreas Görgen

Measuring the mixing parameter δ

We know σ/I and have assigned I^{π} For wobbling bands, we expect ΔI =1 E2 inter-band transitions. \Rightarrow L=1, L'=2, large δ

Two possible solutions

Angular distribution cannot distinguish between the two. \Rightarrow measure the linear polarization to establish electric or magnetic character.

Andreas Görgen

Linear polarization

linear polarization: fixed direction of electric field vector E

Compton scattering is sensitive to linear polarization: Klein-Nishina formula

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \frac{\omega'^2}{\omega^2} \left(\frac{\omega'}{\omega} + \frac{\omega}{\omega'} - 2\sin^2\theta \cos^2\zeta \right)$$

electric transitions appear positive, magnetic transitions negative

Andreas Görgen

Polarization measurement in ¹⁶³Lu

	Eγ	$A = \frac{N(90^{\circ}) - N(0^{\circ})}{N(90^{\circ}) + N(0^{\circ})}$		
E2	579	0.10 ± 0.03		
	697	0.13 ± 0.03	positive	
	386	0.06 ± 0.05		
	534	0.05 ± 0.04		
M1	349	-0.11 ± 0.05	negative	
inter-band	607	0.05 ± 0.05		
	626	0.12 ± 0.05		
	643	0.11 ± 0.05	positive	
	659	0.17 ± 0.09	\Rightarrow electric	
	673	0.18 ± 0.09		

Confirmation of the wobbling mode in ¹⁶³Lu through combined angular distribution and linear polarization measurement.

saclav

MacLaurin shapes

What happens if we spin a liquid drop ?

It becomes oblate !

Jupiter: ➤ T = 9 h 50 min ➤ polar / equatorial axis ~ 15/16

MacLaurin shape after C. MacLaurin (1698-1746)

But what if we spin really fast ?

Andreas Görgen

Jacobi shapes

The equilibrium shape changes abruptly to a very elongated triaxial shape rotating about its shortest axis.

piece of moon rock from Apollo mission

sacla

The Jacobi shape transition in nuclei

Carl Gustav Jacob Jacobi (1804 - 1851) discovered transition from oblate to triaxial shapes in the context of rotating, idealized, incompressible gravitating masses in 1834.

In 1961 Beringer and Knox suggested a similar transition in the case of atomic nuclei, idealized as incompressible, uniformly charged, liquid drops endowed with surface tension.

100

Andreas Görgen

What is the signature of a Jacobi transition in nuclei?

- sharp decrease of frequency with increasing angular momentum (giant backbend of the moment of inertia)
- Frequency of collective rotation is related to the E2 γ-ray energy: $\hbar ω = \frac{1}{2} E_γ$
- many rotational bands at high spin quasi-continuous transitions

- measure the energy of the quasi-continuous 'E2 bump' as a function of angular momentum
- series of experiments with Gammasphere

⁴⁸Ca + ⁵⁰Ti @ 200 MeV
⁴⁸Ca + ⁶⁴Ni @ 207 MeV
⁴⁸Ca + ⁹⁶Zr @ 207 MeV
⁴⁸Ca + ¹²⁴Sn @ 215 MeV

- as neutron rich as possible:
- \Rightarrow higher fission barrier

Measuring angular momentum with Gammasphere

108 Ge detectors 6 x 108 = 648 BGO detectors

increase in false veto signals reduced Ge efficiency but very high granularity

K = number of hits = fold $M = \gamma$ rays emitted = multiplicity (from response function) J = initial angular momentum (from angular distribution)

The E2 bump

K measures the angular momentum E2 bump measures rotational frequency

dapnia

 \mathbf{e}

Comparison to liquid drop calculations

D. Ward et al., Phys. Rev. C 66, 024317 (2002)

two modifications:

- Iower effective moment of inertia at low spin due to pairing
- no collective rotation about axially symmetric (MacLaurin) shapes in nuclei, instead, collective rotations are associated with (mostly) prolate shapes
 - \rightarrow no sharp transition caused by breaking of axial symmetry, but smooth transition

dapnia

Ą

⁴⁰Ca+⁴⁰Ca @ 167 MeV

The nucleus of interest is often only weakly populated compared to a large background of other nuclei.

Additional sensitivity from:➤ charged-particle detectors➤ neutron detectors

- recoil detectors
- tagging techniques

neutrons are deeply				761/	⁷⁸ Zr 2n	⁷⁹ Zr 1n	⁸⁰ Zr
particle evaporation favored despite Coulomb barrier			p3n	// Y p2n 0.18	pn	⁷⁹ Ү 1р	
			⁷⁵ Sr αn	⁷⁶ Sr 2p2n 4.06	⁷⁷ Sr 2pn 2.95	⁷⁸ Sr 2p	
		⁷² Rb αp3n	⁷³ Rb αp2n 0.01	⁷⁴ Rb αpn 2.49	⁷⁵ Rb αp 5.35	⁷⁶ Rb 3pn 101	⁷⁷ Rb 3p 2.31
	⁷⁰ Kr 2α2n	⁷¹ Kr 2αn 0.18	⁷² Kr 2α 0.37	⁷³ Kr α2pn 52	⁷⁴ Kr α2p 20.3	⁷⁵ Kr 4pn 132	⁷⁶ Kr 4p 74.2
	⁶⁹ Br 2αp2n	⁷⁰ Br 2αpn 6.82	⁷¹ Br 2αp 11.4	⁷² Br α3pn 38.2	⁷³ Br α3p 128	⁷⁴ Br 5pn 3.23	⁷⁵ Br 5p 68.2
⁶⁷ Se 3αn	⁶⁸ Se 3α 5.07	⁶⁹ Se 2α2pn 1.57	⁷⁰ Se 2α2p 94	⁷¹ Se α4pn 0.46	⁷² Se α4p 102	⁷³ Se 6pn	⁷⁴ Se 6p 1.57
⁶⁶ As 3αpn	⁶⁷ As 3αp 15	⁶⁸ As 2α3pn	⁶⁹ As 2α3p 35.6	⁷⁰ As α5pn	⁷¹ As α5p 2.03	⁷² As 7pn	⁷³ As 7p
⁶⁵ Ge 3α2pn	⁶⁶ Ge 3α2p 8.3	⁶⁷ Ge 2α4pn	⁶⁸ Ge 2α4p 0.37	⁶⁹ Ge α6pn	cross sections in mb		

⁶⁴Ge

4α 1.48

saclav

Neutron detection

Gammasphere with Microball and Neutron shell Eu (Washington University, St. Louis)

- used to study nuclei near N=Z line
 - isospin symmetry
 - proton-neutron pairing
 - > shape coexistence
 - astrophysical rapid-proton capture process
- neutrons are separated from γ rays by time of flight and pulse shapes (zero-crossing time)
- difficult to distinguish two-neutron hit from scattering

Prompt proton decay in ⁵⁸Cu

≥ ²⁸Si(³⁶Ar,αpn)⁵⁸Cu

D. Rudolph et al., Phys. Rev. Lett. 80, 3018 (1998) Eur. Phys. J. A 14, 137 (2002)

dapnia SPIN

saclav

Recoil decay tagging

JUROGAM – RITU – GREAT at Jyväskylä

saclay Andreas Görgen

¹⁸⁹Bi level schemes

<u>æ</u>

Systematics of the neutron-deficient Bi isotopes

