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Outline

First lecture

� Properties of γ-ray transitions

� Fusion-evaporation reactions

� Germanium detector arrays

� Coincidence technique

� Nuclear deformations

� Rotation of deformed nuclei

� Pair alignment

� Superdeformed nuclei

� Hyperdeformed nuclei

� Triaxiality and wobbling

Second lecture

� Angular distribution

� Linear polarization

� Jacobi shape transition

� Charged-particle detectors

� Neutron detectors

� Prompt proton decay

� Recoil-decay tagging

� Rotation and deformation alignment

Third lecture

� Spectroscopy of transfermium nuclei

� Conversion-electron spectroscopy 

� Quadrupole moments and transition rates

� Recoil-distance method

� Doppler shift attenuation method

� Fractional Doppler shift method

� Magnetic moments

� Perturbed angular distribution

� Magnetic Rotation

� Shears Effect

Fourth lecture
� Fast fragmentation beams
� Isomer spectroscopy after fragmentation
� E0 transitions
� Shape coexistence
� Two-level mixing
� Coulomb excitation
� Reorientation effect
� ISOL technique
� Low-energy Coulomb excitation of 74Kr
� Relativistic Coulomb excitation of 58Cr
� Gamma-ray tracking
� AGATA
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Summary (II)



IoP Nuclear Physics Summer School                      Chester, September 2005Andreas Görgen 4

Spectroscopy of heavy elements

S. Eeckhaudt et al.,
Eur. Phy. J. A, in press

Rotational band ⇔ deformation
Compare moment of inertia J  (2)

with calculations.

� Recoil-decay tagging is highly selective.
� It allows to study extremely weak structures

in a huge background.

� α-decay tagging in
� very neutron-deficient heavy nuclei

� very heavy nuclei: Transfermia (Z ≥ 100)
� (α emitters with tiny cross sections)

109Ag(83Kr,3n)189Bi  

σ = 12µb

T1/2 = 667 ms

208Pb(48Ca,2n)254No  

σ = 3.4 µb
T1/2 = 48 s
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⇒ conversion-electron
spectroscopy

We can still correlate

prompt γ rays with 
α decay after a half life
of 48 s !
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Internal conversion

Energy difference between states 
carried away by atomic electron:
Ee= Eγ - Be       (K, LI, LII, LIII,…)

Be binding energy of the shell

Overlap of electron and nuclear 
wave functions, not a two-step
process.

Internal conversion coefficients:
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Strong dependence on
� transition energy
� multipolarity EL or ML

� atomic number Z

By measuring the internal conversion 
coefficient, it is possible to determine 
the multipolarity of a transition.
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B

detectortarget

Prompt conversion-electron spectroscopy: SACRED

beam
recoil

RITU

atomic 
electrons

electron-electron coincidences
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Prompt conversion-electron spectroscopy of 254No

SACRED and RITU

P.A. Butler et al., Phys. Rev. Lett. 89, 202501 (2002)
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Super-heavy elements – magic numbers

model Z N

WS 114 184
FRDL 114 178
HFB 126 184
RMF 120 172

Where is the next shell gap ?

odd nuclei probe 
single-particle structure 

Spectroscopy of nuclei around
254No can give information about 
orbitals that originate from above
the super-heavy shell closure.

The nuclei around 254No are deformed

(⇒ rotational bands)
102

Synthesis of super-heavy elements
gives direct information about their
stability, but is extremely difficult:

σ = 4.5 pb for 242Pu(48Ca,4n)286114
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Prompt γγγγ spectroscopy of 251Md

205Tl(48Ca,2n)251Md

σ ~ 800 nb

2 weeks beam time

JUROGAM and RITU

Jyväskylä

First rotational band in an odd
nucleus with Z>100

A. Chatillon et al., to be published
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Electromagnetic properties of the rotational band in 251Md

compatible with [521]1/2- band
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reflection 

⇒ parity eigenvalues ±1

rotation 
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Quadrupole moments and transition rates

ellipsoid with symmetry axis z
electric quadrupole moment with respect to z
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Measuring lifetimes: Doppler shift  methods

� Recoil-distance Doppler shift method: RDDS

� 1 ps – 1 ns

� Plunger with target and stopper or degrader foil

� Doppler-shift attenuation method: DSAM

� 100 fs – 1 ps

� backed target and lineshape analysis

� Fractional Doppler shifts: F(τ) method

� 5 – 50 fs

� thin target
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Recoil-Distance Doppler Shift Method

gamma rays are emitted

target and stopper foil at distance d 

� in flight ⇒ peak Doppler shifted

Lifetimes deduced from stopped and shifted
intensities as a function of distance

� stopped ⇒ sharp peak at energy E0
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beam stopper

stopper

target

piezo crystal
0 -30 µm ;
feed back

piezo motor
(Inchworm)
0 -8mm; +/-0.5 µm 

The Köln Plunger
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Differential decay curve method

40Ca(40Ca,a2p)74Kr 

� forward detectors (36˚)
� gated from above on shifted component
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A. Dewald et al., Z. Phys. A. 334, 163 (1989)
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Differential Recoil-Distance Doppler Shift Method

� γ emitted at velocity β1

target et degrader at distance d 

� γ emitted at velocity β2 < β1

Germanium 
detectors
(e.g. JUROGAM)

Spectrometer,
Recoil separator
(e.g. RITU)

Identification,
Recoil decay tagging

(e.g. GREAT)
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Doppler shift attenuation method

gamma rays are emitted

target with backing

� with full recoil velocity

Lineshape profile 
characteristic for lifetime

� finally stopped

� slowed down
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Lineshape analysis

τ = 0.250 ps τ = 0.119 ps

� Simulate velocity history (3D) for recoils 
using Monte Carlo techniques
based on reaction kinematics and 
stopping powers in target and backing

� convert velocity histories into line-shape 
profiles as seen by individual detectors
(detector geometry and efficiency)

� compare simulated line shapes with  

observed peak profiles and minimize χ2

τ

τ

τ

τ

τ

τ

τ
τ

� Each state has its lifetime.
� We measure accumulated 

lifetime including those of 
all states above.

� We have to start at the top
and work our way down.

� Once we have a first guess
we can fit several transitions
simultaneously.

� Finally we can fit all lifetimes
of the entire cascade 
simultaneously.

� Side feeding is a problem.

50º

70º

130º
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Side feeding

� direct feeding from statistical γ rays
� side feeding from excited bands
� in-band feeding

� It is impossible to measure all lifetimes
of states above the one in question.

� We know the side-feeding intensity.
� Assume rotational model: side feeding

comes from rotational band with fixed
deformation (quadrupole moment).

� This allows to calculate feeding lifetime.
� Treat QSF as free parameter in the fit.
� Gating from above eliminates side feeding.
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Fractional Doppler shifts – F(ττττ) method

forward detectors (50º)
no Doppler correction

backward detectors (130º)
no Doppler correction
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fit average recoil velocity 
for each transition
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βτ =F
β average recoil velocity
β0 average initial recoil velocity

very fast transitions at the top of the SD band 
have almost the full initial recoil velocity: F(τ)≈1

not quite as fast transitions are emitted still
within the thin target, but after the recoils have 
been slightly slowed down, F(τ)≈0.9

slower transitions at the bottom of the band and 
ND transitions are emitted after the recoils have
left the target, F(τ)≈0.8

� Extract quadrupole moment by comparing
with simulation, including stopping powers.

� Gives quadrupole moment of the band,
not individual lifetimes.

6.6 eb
5.9 eb
5.6 eb 3.5 eb
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6.7 eb
5.9 eb

3.5 eb

thin target data

K. Lagergren et al., 
Phys. Rev. C 68, 064309 (2003)
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Magnetic moments
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for a proton    gs=5.5858     gl=1

for a neutron  gs=-3.8261    gl=0

the resulting magnetic moment is very sensitive 
to the spins and their coupling,
and therefore to the nuclear structure.

for a single nucleon with orbital angular momentum l and spin s:

BV
rr

⋅−= µmag
interaction with a magnetic field: ⇒ Larmor precession

B

perturbed angular distribution
� apply magnetic field and measure angular distribution
� Larmor frequency gives g factor
� short lifetimes require strong fields

� τ ~ ns ⇒ external field of a few Tesla
� τ ~ ps ⇒ transient field (~kT) of ion passing 

through ferromagnetic medium
(sandwich target)
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Rotational (?) bands in Pb isotopes
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� Found throughout 
191Pb - 202Pb and also in
other mass regions.

� Very regular band of
strong M1 transitions.

� The E2 transitions are
very weak.

� This can’t be a rotational
band of a well-deformed 
nucleus.

G. Baldsiefen et al., Phys. Lett. 275B, 252 (1992)

Conversion-electron spectroscopy
and linear polarization measurements
confirm M1 character of the bands in Pb.

W. Pohler et al., Eur. Phys. J. A 5, 257 (1999)
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Proton and neutron excitations in Pb

closed proton shell
proton excitations across the gap into

the πh9/2 or πi13/2 shell possible
e.g. π(h9/2i13/2)11-

open neutron shell
neutron hole excitations in the 

νi13/2 shell possible
e.g. ν(i13/2

-2)12+

The M1 bands are not built directly
on these states. 
Typical spin of the band head ~16 ħ

11-

12+

16-

A. Görgen et al., Nucl. Phys. A 683, 108 (2001)
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Magnetic Rotation

g = +1.11 g = -0.15

jν

jπ

µν

µπ

Itot

µtot

µ⊥

large transverse component
of magnetic moment

⇒ generates strong M1 transitions

g = 0.68 (3)

S. Chmel et al., Phys. Rev. Lett. 79, 2002 (1997)

g factor measurement for band head in 193Pb:
time-differential perturbed angular distribution (TDPAD)

N

S

170Er(28Si,5n)193Pb
pulsed beam 
(1.3ns/400ns)

Iν

neutrons

ν(i13/2)
-1
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Shears effect
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Large moment of inertia
comes from proton and
neutron currents.

Coriolis interaction alignes
proton and neutron spins.

S. Frauendorf, Nucl. Phys. A 557, 259 (1993)
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Shears effect

� Lifetime measurements (DSAM and RDDS)
confirm characteristic decrease of B(M1) values.

� Good agreement with Tilted Axis Cranking (TAC)
calculations.

R.M. Clark et al., Phys. Lett. B 440, 251 (1998)
A.K. Singh et al., Phys. Rev. C 66, 064314 (2002)

� When the shears are closed, more angular 
momentum can be generated by breaking 
a pair (of neutrons) and the (bigger) shears 
open again.

196Pb


