

Shapes and shape coexistence at low and high angular momentum

Andreas Görgen

CEA Saclay - DSM / DAPNIA / SPhN

Outline

- Shape coexistence at low spin: light Krypton isotopes
 - Safe projectile Coulomb excitation of SPIRAL beams
 - RDDS lifetime measurement after fusion evaporation
 - > Interpretation
- Perspectives: SPIRAL-1 / SPIRAL-2
- New symmetries
- > Extreme shapes at very high spins: challenges
 - Very deformed structures in ¹⁰⁸Cd
 - Towards hyperdeformation with RIBs ?
- Summary and conclusions

Systematics of the light krypton isotopes

energy of excited 0+

- > E0 strengths $\rho^2(E0)$
- configuration mixing
- Inversion of ground state shape for ⁷²Kr
- Coulomb excitation to determine the nuclear shapes directly

Radioactive beam production: SPIRAL

Andreas Görgen

Colloque de GANIL

Acta Phys. Pol. B 36, 1281 (2005)

Coulomb excitation analysis : GOSIA*

- Yields from Coulomb excitation inconsistent with published lifetimes, especially for 4⁺ in ⁷⁴Kr
- New RDM lifetime measurement

*D. Cline, C.Y. Wu, T. Czosnyka; Univ. of Rochester

- γ yields as function of scattering angle: differential cross section
- least squares fit of ~ 30 matrix elements (transitional and diagonal)
- experimental spectroscopic data
 - lifetimes
 - ➢ branching ratios

dapnia

saclav

Lifetime measurement with GASP and the Köln Plunger

⁴⁰Ca(⁴⁰Ca,a2p)⁷⁴Kr ⁴⁰Ca(⁴⁰Ca,4p)⁷⁶Kr

Andreas Görgen

Colloque de GANIL

Lifetime results

saclay

Eur. Phys. J. A 26, 153 (2005)

Andreas Görgen

Colloque de GANIL

Andreas Görgen

Sensitivity to quadrupole moments

full χ^2 minimization:

 $\left< 2_1^+ \| \mathcal{M}(E2) \| 2_1^+ \right> = -0.70^{+0.33}_{-0.30}$ $\left< 4_1^+ \| \mathcal{M}(E2) \| 4_1^+ \right> = -1.02_{-0.21}^{+0.59}$

negative matrix element (positive quadrupole moment Q₀) \Rightarrow prolate shape

$$\left< 2_2^+ \| \mathcal{M}(E2) \| 2_2^+ \right> = +0.33_{-0.28}^{+0.28}$$

positive matrix element (negative quadrupole moment Q_0) \Rightarrow oblate shape

140

100

Colloque de GANIL

Scattering Angle in center of mass

120

direct confirmation of the prolate – oblate shape coexistence
 first reorientation measurement with radioactive beam

Towards ⁷²Kr

- SPIRAL-1 at present: ~200 pps ⁷²Kr measured before CIME ⇒ ~50 pps on target : not feasible
- > with 500 pps on target \Rightarrow precise B(E2) to first and second 2⁺ states
- need for more intense primary beams of medium-heavy ions benefit for both SPIRAL and fragmentation beams at intermediate energy
 - > heavy N≈Z nuclei
 - > exotic decays beyond the proton drip line
 - > search for isomers and measurement of moments near ⁷⁸Ni
- > GTS source (Grenoble/GANIL) can deliver such intense beams example: ~20 eµA ⁷⁸Kr at 73 A.MeV (3 kW) ⇒ gain ~ factor 10 ⇒ Letter of Intent

Coulomb excitation after fusion evaporation

and Coulex target

Example: ${}^{58}\text{Ni}+{}^{12}\text{C} \rightarrow {}^{68}\text{Se}+2n \ (\sigma_{2n} \approx 3 \text{ mb}, \sigma_{tot} \approx 800 \text{ mb})$ beam energy: 210 MeV \Rightarrow recoil energy = 174 MeV = 2.56 A MeV 300 µg/cm² target and 100 eµA beam (20+) \Rightarrow 1.3 $\cdot 10^{6}$ ${}^{68}\text{Se}$ recoils/s access to non-yrast states – important for shape coexistence

other example: ²⁴Mg(⁵⁸Ni,2n)⁸⁰Zr with A/q=6 and heavier beams: ⁴⁸Ca(²⁰⁸Pb,2n)²⁵⁴No

Andreas Görgen

Fission fragment beams from SPIRAL-2

Shape coexistence in neutron-rich fission fragments

N. Schunck et al., Phys. Rev. C69, 061305(R) (2004)

- prolate-oblate shape coexistence around N=60
- > new symmetries: tetrahedral shapes

experimental

signatures:

N. Schunck, J. Dudek

-0.2

0.0

Tetrahedral Deformation

parity doublets
 static octupole moment Q₃

> shape isomers

 $^{90}_{40}{
m Zr}_{50}$

0.4

0.2

The superdeformed world

Very deformed structures in ¹⁰⁸Cd

saclay

⁶⁴Ni(⁴⁸Ca,4n)¹⁰⁸Cd Gammasphere @ LBL A. Gö

R.M. Clark et al., PRL 87, 202502 (2001) A. Görgen et al., PRC 65, 027302 (2002)

Andreas Görgen

Colloque de GANIL

29.5.-2.6.2006

 $\succ \gamma$ -ray multiplicity

Doppler shift

 \Rightarrow spin range 40-60 ħ

Intruder orbitals

dapnia

- ➢ one major shell below (N-1) ⇒ normal deformed, e.g. ²³⁵U
- two major shells below (N-2) super-intruder
 - \Rightarrow Superdeformation, e.g. ¹⁵²Dy
- three major shells below (N-3)
 hyper-intruder occupied in ¹⁰⁸Cd
 ⇒ Hyperdeformation ?

Where is the neutron hyper intruder $j_{15/2}$? \triangleright expected to be occupied in ¹¹²Cd, ¹¹⁴Cd

two reasons to go more neutron rich:

- towards doubly-magic hyperdef
- higher angular momentum limit

extreme deformation stabilized by rapid rotation hints for Jacobi shape transition in ¹⁰⁸Cd D. Ward et al., Phys. Rev. C 66, 024317 (2002)

Angular momentum limit

Andreas Görgen

Colloque de GANIL

Gamma-ray tracking

I.-Y. Lee

Future of γ -ray spectroscopy at GANIL

saclay

AGATA demonstrator @ GANIL

- physics case completed
- technical proposal to be submitted to ASC in June
- campaign starting end 2008 / beginning 2009 ?

Most SPIRAL-2 experiments will involve γ spectroscopy. AGATA (in its various stages) and SPIRAL-2 make a very powerful combination.

Working group "Shapes and High Spins" (N. Redon & A.G.) Letter of Intent: **Your ideas needed !**

SPIRAL-1 developments ? direct beam line CIME – G1/G2 !

Andreas Görgen

Colloque de GANIL

Summary and conclusions

- Low-energy projectile Coulomb excitation with RIB
 - direct confirmation of shape coexistence in ^{74,76}Kr
 - first reorientation measurement with RIB
- Plunger lifetime measurement after fusion-evaporation
 - complementary measurement of B(E2) values
 - ➤ importance of stable beams
- ➤ Perspectives for A≈70 region:
 - ➢ intensity upgrade of SPIRAL-1
 - Coulex after fusion-evaporation using LINAG
- Exotic shapes and shape coexistence in fission fragments
 - ➢ rich physics case for SPIRAL-2
- Challenges in high-spin physics
 - > push the angular momentum limit with SPIRAL-2
 - push the detection limit with AGATA