Some recent examples ...

- Prompt particle decay from deformed excited states
- Superdeformed bands all over the chart of nuclides
- Spectroscopy of transfermium nuclei: Towards the SHE's ...
- Ground state proton decay: spectroscopy beyond the dripline

We are <u>not</u> talking about β -delayed proton decay ...

... but ground state proton decay of nuclei <u>beyond</u> the proton dripline !

"Long" (observable) lifetimes in heavy nuclei due to Coulomb and angular momentum barrier !

How to study proton radioactivity ?

- ➡ choose heavy nuclei: Longer lifetimes due to Coulomb and angular momentum barrier
- **→** produce in fusion evaporation reactions
- **→** separate and subsequently **stop** in a detector **for identification**
- use segmented silicon strip detectors to observe delayed decay (recoil decay tagging)

Some of the recently observed proton emitters

⁹²Mo + ⁵⁴Fe à ¹⁴¹Ho + p4n @ 292 MeV
⁵⁴Fe + ⁹²Mo à ¹⁴¹Ho + p4n @ 502 MeV

σ~100 nbarn

Recoil decay tagging with Gammasphere+FMA

• same setup than in No experiment

• now proton instead of α decay

<u>High spin physics:</u> Instrumentation, experimental techniques and examples

Andrea Jungclaus

Universidad Autónoma de Madrid

• introduction

- γ-ray spectrometer
- ancillary detectors
- examples:
 - o prompt particle decay from deformed excited states
 - superdeformed bands
 - spectroscopy of transfermium nuclei
 - ground state proton decay
- next generation γ -ray spectrometer

And what comes next after EB and Gammasphere: The next generation of γ -ray spectrometer ...

old: e.g. EUROBALL

View into the collimators of EUROBALL

Large fraction of dead solid angle !

Try to get rid of Compton suppression shields !

Why don't we use a Ge shell ? **EUROBALL** 239 Gecrystak Ge Shell in composite N~100-200 detectors R_i 25 - 40 cm

R_i~15 cm

Another problem:

small $R \rightarrow large \Omega \rightarrow$ large Doppler broadening !

"High-spin" spectrometer

M=1	P _{ph} : ≈9% P/T: ≈60%	≈65% ≈85%	
M=30	P _{ph} : ≈6.5% P/T: ≈40%	≈6.5% ≈13%	summing

The possible solution of these problems

like **EUROBALL, Gammasphere** etc. for high-spin spectroscopy after fusion-evaporation reactions

for low-rate experiments: e.g. MINIBALL at REX-ISOLDE

The future: **AGATA** in Europe and **GRETA** in the US

The MINIBALL Ge module

length: 78mm diameter: 68 mm

(same shape as Ge crystals in EUROBALL Cluster detectors)

asymmetric triple cryostats

The MINIBALL array for low-rate experiments

42 6-fold segmented Ge crystals in cryostats with 3 (4) crystals

AGATA - Advanced GAmma Tracking Array

50% photopeak efficiency !

AGATA design elements (Advanced Gamma Tracking Array)	hly segmented germanium detectors	 180 hexagonal crystals in 3 different, asymmetric shapes grouped in 60 triple-cluster cryostats grouped in 60 triple-cluster cryostats individually canned 230 kg of germanium crystals of Ø cm; L : 9 cm full sphere with solid angle coverage ~78 % inner-outer radius of 17-26 cm total of 6780 segments
	$4\pi \gamma$ -array design based on 190 higl	

γ -ray tracking

Photons do not deposit their energy in a continuous track, rather they lose it in discrete steps

Tracking algorithms

Basic ingredient: Compton scattering formula

$$E_{\gamma i} = \frac{E_{\gamma i-1}}{1 + \frac{E_{\gamma i-1}}{m_0 c^2} (1 - \cos \theta_i)} \qquad e_i = E_{\gamma i-1} - E_{\gamma i}$$

Several algorithms are available:

- Clustering
- Clustering + forward tracking
- Backtracking
- Probabilistic tracking
- Fuzzy tracking

Benefits of the γ -ray tracking

From EUROBALL/Gammasphere to AGATA ...

AGATA

providing radioactive and high-intensity stable beams 4π γ -array for Nuclear Physics Experiments (Advanced GAmma Tracking Array) at European accelerators

Main features of AGATA

 Efficiency:
 $39\% (M_{\gamma}=1)$ $25\% (M_{\gamma}=30)$

 today's arrays
 ~10% (gain ~4)
 5% (gain ~1000)

 Peak/Total:
 $53\% (M_{\gamma}=1)$ $46\% (M_{\gamma}=30)$

 today
 ~55\%
 40%

 Angular Resolution:
 ~1° \rightarrow

 FWHM (1 MeV, v/c=50%)
 ~6 keV III

today ~40 keV **Rates:** 3 MHz (M_Y=1) 300 kHz (M_Y=30) today 1 MHz 20 kHz

- 180 large volume 36-fold segmented Ge crystals packed in 60 triple-clusters
 - Digital electronics and sophisticated Pulse Shape Analysis algorithms allow
- Operation of Ge detectors in position sensitive mode $\rightarrow \gamma$ -ray tracking
 - Demonstrator ready by 2007; Construction of full array from 2008

