MPTools() | |
MPTools(const MPTools&) | |
~MPTools() | |
void | TObject::AbstractMethod(const char* method) const |
virtual void | TObject::AppendPad(Option_t* option = "") |
static Double_t | binomialDistribution(Double_t* x, Double_t* par) |
static Double_t | binomialDistribution(Double_t x, Double_t singleProbability, Double_t N, Double_t logAmplitude = 0.) |
virtual void | TObject::Browse(TBrowser* b) |
static Double_t | calcCMEnergyOfPairDecay(Double_t minv, Double_t m1, Double_t m2) |
static Double_t | calcCMMomentumOfPairDecay(Double_t minv, Double_t m1, Double_t m2) |
static Double_t | calcCMMomentumOfPairDecay(Double_t minv, Double_t m1, Double_t m2, Double_t minvErr, Double_t m1Err, Double_t m2Err, Double_t& err) |
static TH1* | calculateLikeSignCombinatorialBackground(TH1* pp, TH1* mm, TString name = "background") |
static TH1* | calculateLikeSignCombinatorialBackground(TH1* pp, TH1* mm, TH1* correction, TString name = "background") |
static Double_t | chiSquareDistribution(Double_t* x, Double_t* par) |
static Double_t | chiSquareDistribution(Double_t x, Double_t ndf, Double_t logAmplitude = 0.) |
static TClass* | Class() |
virtual const char* | TObject::ClassName() const |
virtual void | TObject::Clear(Option_t* = "") |
virtual TObject* | TObject::Clone(const char* newname = "") const |
virtual Int_t | TObject::Compare(const TObject* obj) const |
virtual void | TObject::Copy(TObject& object) const |
virtual void | TObject::Delete(Option_t* option = "")MENU |
virtual Int_t | TObject::DistancetoPrimitive(Int_t px, Int_t py) |
virtual void | TObject::Draw(Option_t* option = "") |
virtual void | TObject::DrawClass() constMENU |
virtual TObject* | TObject::DrawClone(Option_t* option = "") constMENU |
virtual void | TObject::Dump() constMENU |
virtual void | TObject::Error(const char* method, const char* msgfmt) const |
virtual void | TObject::Execute(const char* method, const char* params, Int_t* error = 0) |
virtual void | TObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0) |
virtual void | TObject::ExecuteEvent(Int_t event, Int_t px, Int_t py) |
virtual void | TObject::Fatal(const char* method, const char* msgfmt) const |
virtual TObject* | TObject::FindObject(const char* name) const |
virtual TObject* | TObject::FindObject(const TObject* obj) const |
static Double_t | getDistancePointToStraight(HGeomVector& point, HGeomVector& base, HGeomVector& direction) |
virtual Option_t* | TObject::GetDrawOption() const |
static Long_t | TObject::GetDtorOnly() |
virtual const char* | TObject::GetIconName() const |
virtual const char* | TObject::GetName() const |
virtual char* | TObject::GetObjectInfo(Int_t px, Int_t py) const |
static Bool_t | TObject::GetObjectStat() |
virtual Option_t* | TObject::GetOption() const |
virtual const char* | TObject::GetTitle() const |
virtual UInt_t | TObject::GetUniqueID() const |
virtual Bool_t | TObject::HandleTimer(TTimer* timer) |
virtual ULong_t | TObject::Hash() const |
virtual void | TObject::Info(const char* method, const char* msgfmt) const |
virtual Bool_t | TObject::InheritsFrom(const char* classname) const |
virtual Bool_t | TObject::InheritsFrom(const TClass* cl) const |
virtual void | TObject::Inspect() constMENU |
static Double_t | integralGauss(Double_t* x, Double_t* par) |
void | TObject::InvertBit(UInt_t f) |
virtual TClass* | IsA() const |
virtual Bool_t | TObject::IsEqual(const TObject* obj) const |
virtual Bool_t | TObject::IsFolder() const |
Bool_t | TObject::IsOnHeap() const |
virtual Bool_t | TObject::IsSortable() const |
Bool_t | TObject::IsZombie() const |
virtual void | TObject::ls(Option_t* option = "") const |
void | TObject::MayNotUse(const char* method) const |
virtual Bool_t | TObject::Notify() |
static void | TObject::operator delete(void* ptr) |
static void | TObject::operator delete(void* ptr, void* vp) |
static void | TObject::operator delete[](void* ptr) |
static void | TObject::operator delete[](void* ptr, void* vp) |
void* | TObject::operator new(size_t sz) |
void* | TObject::operator new(size_t sz, void* vp) |
void* | TObject::operator new[](size_t sz) |
void* | TObject::operator new[](size_t sz, void* vp) |
MPTools& | operator=(const MPTools&) |
virtual void | TObject::Paint(Option_t* option = "") |
static Double_t | poissonDistribution(Double_t* x, Double_t* par) |
static Double_t | poissonDistribution(Double_t x, Double_t mean, Double_t logAmplitude = 0.) |
static Double_t | poissonDistributionShifted(Double_t* x, Double_t* par) |
static Double_t | poissonDistributionShifted(Double_t x, Double_t mean, Double_t logAmplitude = 0., Double_t shift = 0) |
virtual void | TObject::Pop() |
virtual void | TObject::Print(Option_t* option = "") const |
static TH1D* | projectPtYDownToMt(TH2* hist, Int_t ymin, Int_t ymax, Double_t mass) |
static TH1D* | projectPtYDownToMtInBoltzmannRepresentation(TH2* hist, Int_t ymin, Int_t ymax, Double_t mass) |
static TH1D* | projectPtYDownToMtInInvariantRepresentation(TH2* hist, Int_t ymin, Int_t ymax, Double_t mass) |
static TH1D* | projectPtYDownToMtM0(TH2* hist, Int_t ymin, Int_t ymax, Double_t mass) |
static TH1D* | projectPtYDownToMtM0InInvariantRepresentation(TH2* hist, Int_t ymin, Int_t ymax, Double_t mass) |
static TObjArray* | projectPtYDownToPt(TH2* hist, Int_t stepSize = 1) |
static TH1D* | projectPtYDownToPt(TH2* hist, Int_t ymin, Int_t ymax) |
static TH1D* | projectPtYDownToPtInBoltzmannRepresentation(TH2* hist, Int_t ymin, Int_t ymax, Double_t mass) |
static TH1D* | projectPtYDownToPtInInvariantRepresentation(TH2* hist, Int_t ymin, Int_t ymax) |
static TObjArray* | projectPtYDownToPtScaled(TH2* hist, Double_t scaleFactor = 1., Int_t stepSize = 1) |
static TObjArray* | projectPtYDownToY(TH2* hist, Int_t stepSize = 1) |
static TH1D* | projectPtYDownToY(TH2* hist, Int_t ptmin, Int_t ptmax) |
static TObjArray* | projectPtYDownToYScaled(TH2* hist, Double_t scaleFactor = 1., Int_t stepSize = 1) |
virtual Int_t | TObject::Read(const char* name) |
virtual void | TObject::RecursiveRemove(TObject* obj) |
void | TObject::ResetBit(UInt_t f) |
virtual void | TObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU |
virtual void | TObject::SavePrimitive(basic_ostream<char,char_traits<char> >& out, Option_t* option = "") |
void | TObject::SetBit(UInt_t f) |
void | TObject::SetBit(UInt_t f, Bool_t set) |
virtual void | TObject::SetDrawOption(Option_t* option = "")MENU |
static void | TObject::SetDtorOnly(void* obj) |
static void | TObject::SetObjectStat(Bool_t stat) |
virtual void | TObject::SetUniqueID(UInt_t uid) |
virtual void | ShowMembers(TMemberInspector& insp, char* parent) |
virtual void | Streamer(TBuffer& b) |
void | StreamerNVirtual(TBuffer& b) |
virtual void | TObject::SysError(const char* method, const char* msgfmt) const |
Bool_t | TObject::TestBit(UInt_t f) const |
Int_t | TObject::TestBits(UInt_t f) const |
virtual void | TObject::UseCurrentStyle() |
virtual void | TObject::Warning(const char* method, const char* msgfmt) const |
virtual Int_t | TObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) |
virtual Int_t | TObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const |
virtual void | TObject::DoError(int level, const char* location, const char* fmt, va_list va) const |
void | TObject::MakeZombie() |
enum TObject::EStatusBits { | kCanDelete | |
kMustCleanup | ||
kObjInCanvas | ||
kIsReferenced | ||
kHasUUID | ||
kCannotPick | ||
kNoContextMenu | ||
kInvalidObject | ||
}; | ||
enum TObject::[unnamed] { | kIsOnHeap | |
kNotDeleted | ||
kZombie | ||
kBitMask | ||
kSingleKey | ||
kOverwrite | ||
kWriteDelete | ||
}; |
calculates binwise the likesign combinatorial background of two given histograms
using the formula
/---------
back = 2 * V pp * mm
and returns the pointer to the background histogramm
with the name assigned assigned by name [default: "background"]
if pp or mm are null pointers NULL is returned
if pp and mm are not compatible NULL is returned
calculates binwise the likesign combinatorial background of two given histograms
using the formula
/---------
back = 2 * correction * V pp * mm
and returns the pointer to the background histogramm
with the name assigned assigned by name [default: "background"]
correction is also a histogram containing bin-wise correction factors (like acceptance correction)
if correction, pp or mm are null pointers NULL is returned
if correction, pp and mm are not compatible NULL is returned
discrete poisson distribution as continuous function poisson is the limiting form of the binomial distribution for p->0 and N->infinity r -mean mean e P(r) = ------------- r! translates to r -mean amplitude mean e P(x) = 10 --------------- Gamma(r+1) if x<0 P(0) is returned par[0] : amplitude par[1] : mean
discrete poisson distribution as continuous function poisson is the limiting form of the binomial distribution for p->0 and N->infinity r -mean mean e P(r) = ------------- r! translates to r -mean amplitude mean e P(x) = 10 --------------- Gamma(r+1) if x<0 P(0) is returned
discrete poisson distribution as continuous function poisson is the limiting form of the binomial distribution for p->0 and N->infinity r -mean mean e P(r) = ------------- r! translates to x+shift -mean amplitude mean e P(x) = 10 --------------- Gamma(x+1+shift) if x<0 -1 is returned par[0] : amplitude par[1] : mean
discrete poisson distribution as continuous function poisson is the limiting form of the binomial distribution for p->0 and N->infinity r -mean mean e P(r) = ------------- r! translates to x+shift -mean amplitude mean e P(x) = 10 --------------- Gamma(x+1+shifta) if x<0 -1 is returned
discrete binomial distribution as continuous function N! r N-r P(r) = ------------- p (1 - p) r! (N - r) ! translates to Amplitude Gamma(N+1) r N-r P(x) = 10 ---------------------------- p (1 - p) Gamma(r+1) Gamma (N - r + 1) P(x) the probability of r successes in N tries p is the single probability par[0]: Amplitude, chosen for Normalization purposes par[1]: number of tries (N) par[2]: single probability (p) if x<0 -1 is returned if x>N -1 is returned
discrete binomial distribution as continuous function N! r N-r P(r) = ------------- p (1 - p) r! (N - r) ! translates to Amplitude Gamma(N+1) r N-r P(x) = 10 ---------------------------- p (1 - p) Gamma(r+1) Gamma (N - r + 1) P(x) the probability of r successes in N tries p is the single probability par[0]: Amplitude, chosen for Normalization purposes par[1]: number of tries (N) par[2]: single probability (p) if x<0 -1 is returned if x>N -1 is returned
chi square distriubtion (0.5 * NDF) -1 (- 0.5 * chi2) (0.5 * chi2) * e P(chi2) = ---------------------------------------------- 2 * Gamma (0.5 * NDF) adding a normalization amplitude (0.5 * NDF) -1 (- 0.5 * x[0]) amplitude (0.5 * x[0]) * e P(x[0]) = 10 * ------------------------------------------------ 2 * Gamma (0.5 * NDF) par[1]: NDF are number of degrees of freedom par[0]: amplitude if ndf <=0 -1 is returned
chi square distriubtion (0.5 * NDF) -1 (- 0.5 * chi2) (0.5 * chi2) * e P(chi2) = ---------------------------------------------- 2 * Gamma (0.5 * NDF) adding a normalization amplitude (0.5 * NDF) -1 (- 0.5 * x) amplitude (0.5 * x) * e P(x) = 10 * ------------------------------------------------ 2 * Gamma (0.5 * NDF) NDF are number of degrees of freedom amplitude if ndf <=0 -1 is returned
calculates in a 2-body decay the center of momentum momentum of the decay particles where minv is the invariant mass of the parent m1 is the mass of the particle 1 m2 is the mass of the particle 2 minvErr is the absolute error parents invariant mass m1Err is absolute error of the mass of the particle 1 m2Err is absolute error of the mass of the particle 2 the error is returned via err in case of errors -1. is returned !!!! in case of m1!=m2 I am not quite sure if the result is ok. !!!
calculates in a 2-body decay the center of momentum momentum of the decay particles where minv is the invariant mass of the parent m1 is the mass of the particle 1 m2 is the mass of the particle 2 the error is returned via err in case of errors -1. is returned
calculates in a 2-body decay the center of momentum energy of the decay particles of particle with mass m1 where minv is the invariant mass of the parent m1 is the mass of the particle 1 m2 is the mass of the particle 2 in case of errors -1. is returned
Parametric 1-dimensional function with 3 parameters par[0] = Integral of Gaus-Funktion in range +- infinity par[1] = mean of gauss par[2] = sigma returns 0 if par[2] = 0 else returns par[0]/(sqrt(TMath::Pi()*2)*par[2])*TMath::Gaus(x[0],par[1],par[2])
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the projection of hist in a bin range ymin to ymax on the x-Axis
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the invariant cross section weighted (1/pt) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the boltzmann weighted (1/ptE = 1/(pt*sqrt(pt^2+mass^2)) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the boltzmann weighted (1/ptE = 1/(pt*sqrt(pt^2+mass^2)) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the boltzmann weighted (1/ptE = 1/(pt*sqrt(pt^2+mass^2)) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the boltzmann weighted (1/ptE = 1/(pt*sqrt(pt^2+mass^2)) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the boltzmann weighted (1/ptE = 1/(pt*sqrt(pt^2+mass^2)) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the boltzmann weighted (1/ptE = 1/(pt*sqrt(pt^2+mass^2)) projection of hist in a bin range ymin to ymax on the x-Axis if pt = 0 the weight is also set to 0
if hist is NULL ... NULL is returned otherwise a histogram is returned that is the projection of hist in a bin range ptmin to ptmax on the x-Axis
if hist is NULL ... NULL is returned
otherwise
a TObjArray of histograms is returned
where each histogram is the projection of hist from first bin for "stepSize" bins together,
default: stepsize = 1, i.e for each bin allone
beginning from the second histogram, all histograms are scaled by scaleFactor with respect to the previous histogram
i.e. the (n+1th) histogramm is scaled by scaleFactor to the nth power
if scale factor is negativ than the scaling order is reversed, i.e the first histogramm is scaled most
if hist is NULL ... NULL is returned
otherwise
a TObjArray of histograms is returned
where each histogram is the projection of hist from first bin for "stepSize" bins together,
default: stepSize = 1, i.e for each bin allone
beginning from the second histogram, all histograms are scaled by scaleFactor with respect to the previous histogram
i.e. the (n+1th) histogramm is scaled by scaleFactor to the nth power
if scale factor is negativ than the scaling order is reversed, i.e the first histogramm is scaled most
if hist is NULL ... NULL is returned
otherwise
a TObjArray of histograms is returned
where each histogram is the projection of hist from first bin for "stepSize" bins together,
default: stepsize = 1, i.e for each bin allone
beginning from the second histogram, all histograms are scaled by scaleFactor with respect to the previous histogram
i.e. the (n+1th) histogramm is scaled by scaleFactor to the nth power
if scale factor is negativ than the scaling order is reversed, i.e the first histogramm is scaled most
if hist is NULL ... NULL is returned
otherwise
a TObjArray of histograms is returned
where each histogram is the projection of hist from first bin for "stepSize" bins together,
default: stepSize = 1, i.e for each bin allone
beginning from the second histogram, all histograms are scaled by scaleFactor with respect to the previous histogram
i.e. the (n+1th) histogramm is scaled by scaleFactor to the nth power
if scale factor is negativ than the scaling order is reversed, i.e the first histogramm is scaled most