//*-- AUTHOR : Marco Destefanis //*-- Modified : 26/07/2005 by Marco Destefanis //_HADES_CLASS_DESCRIPTION //////////////////////////////////////////////////////////////////////// // // HHypPKpLambdaMiss0Alg // // This is a SELECTOR removing combinations which do not have // a missing Kplus // //////////////////////////////////////////////////////////////////////// using namespace std; #include <stdlib.h> #include <iostream> #include "hhypPKpLambdaMiss0Alg.h" #include "hypinfodef.h" #include "hgeomtransform.h" #include "hgeomvertexfit.h" #include "hrktrackB.h" ClassImp(HHypPKpLambdaMiss0Alg) HHypPKpLambdaMiss0Alg::HHypPKpLambdaMiss0Alg(Char_t *name_i , Option_t par[]) : HHypBaseAlgorithm(name_i, par) { } HHypPKpLambdaMiss0Alg::~HHypPKpLambdaMiss0Alg() { } Bool_t HHypPKpLambdaMiss0Alg::execute() { if (!beam) { cerr << algoName << " needs beam particle! " << endl; return kFALSE; } // Resetting the list and start looping over the combinations // Loop is only done over the VALID combinations mylist->CombIteratorReset(); while (mylist->CombIterator()) { // Getting the particles TLorentzVector proton1= mylist->getTLorentzVector("p",1); TLorentzVector proton2= mylist->getTLorentzVector("p",2); TLorentzVector kp= mylist->getTLorentzVector("K+",1); TLorentzVector pim= mylist->getTLorentzVector("pi-",1); Int_t idx_p1 = mylist->getIdxPidTrackCand ("p",1); Int_t idx_p2 = mylist->getIdxPidTrackCand ("p",2); Int_t idx_kp = mylist->getIdxPidTrackCand ("K+",1); Int_t idx_pim = mylist->getIdxPidTrackCand ("pi-",1); HRKTrackB *track_p1 = NULL; HRKTrackB *track_p2 = NULL; HRKTrackB *track_kp = NULL; HRKTrackB *track_pim = NULL; HCategory *pidtrackcandCat = gHades->getCurrentEvent()->getCategory(catPidTrackCand); track_p1 = (HRKTrackB *)( (HPidTrackCand *) pidtrackcandCat->getObject(idx_p1))->getTrackData()->getBaseTrack(4); track_p2 = (HRKTrackB *)( (HPidTrackCand *) pidtrackcandCat->getObject(idx_p2))->getTrackData()->getBaseTrack(4); track_kp = (HRKTrackB *)( (HPidTrackCand *) pidtrackcandCat->getObject(idx_kp))->getTrackData()->getBaseTrack(4); track_pim = (HRKTrackB *)( (HPidTrackCand *) pidtrackcandCat->getObject(idx_pim))->getTrackData()->getBaseTrack(4); // HPidTrackCand *PidPart = NULL; // HCategory *pidtrackcandCat = gHades->getCurrentEvent()->getCategory(catPidTrackCand); // PidPart = (HPidTrackCand *) pidtrackcandCat->getObject(idx); // HPidTrackCand* track = mylist->getPidTrackCand(); if ( mylist->getIterStatus() == kTRUE) { /* // calculating missing mass TLorentzVector miss4 = (*beam) - (proton1 + proton2 + kp + pim); TLorentzVector p1kp_miss = (*beam) - (proton1 + kp); TLorentzVector p2kp_miss = (*beam) - (proton2 + kp); TLorentzVector p1pim_invmass = (proton1+pim); TLorentzVector p2pim_invmass = (proton2+pim); // TLorentzVector pp_miss = (*beam) - (proton1 + proton2); // TLorentzVector pippim_invmass = (pip+pim); // NOW I HAVE TO DO THE SELECTION!!!! // Here I set all combinations unvalid which do not fulfill // the requirement //cout << miss4.M2() << endl; Double_t rot[6][9]={ { 1.0000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000}, { 0.5000000, -0.8660254, 0.0000000, 0.8660254, 0.5000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000}, {-0.5000000, -0.8660254, 0.0000000, 0.8660254, -0.5000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000}, {-1.0000000, 0.0000000, 0.0000000, 0.0000000, -1.0000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000}, {-0.5000000, 0.8660254, 0.0000000, -0.8660254, -0.5000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000}, {0.5000000, 0.8660254, 0.0000000, -0.8660254, 0.5000000, 0.0000000, 0.0000000, 0.0000000, 1.0000000}}; HGeomTransform secTrans[6]; for(Int_t s=0;s<6;s++) secTrans[s].setRotMatrix(rot[s]); HGeomVertexFit fFitter1, fFitter2; HGeomVector vertex1, vertex2; Float_t vtx_modulo1, vtx_modulo2; // Lambda vertex fitting // Float_t r_pion, z_pion, theta_pion, phi_pion; HGeomVector rLocal_pion, alphaLocal_pion, rLab_pion, alphaLab_pion; // Float_t r_proton, z_proton, theta_proton, phi_proton; HGeomVector rLocal_proton1, alphaLocal_proton1, rLab_proton1, alphaLab_proton1; HGeomVector rLocal_proton2, alphaLocal_proton2, rLab_proton2, alphaLab_proton2; // rLocal_pion.setX(track_pim.getR()*TMath::Cos(track_pim.phiDeg()+TMath::PiOver2())); rLocal_pion.setX( track_pim->getR() * TMath::Cos( ( track_pim->phiDeg() + 90 ) * TMath::Pi()/180 ) ); rLocal_pion.setY( track_pim->getR() * TMath::Sin( ( track_pim->phiDeg() + 90 ) * TMath::Pi()/180 ) ); rLocal_pion.setZ( track_pim->getZ() ); // base vector in MDC system (punto) alphaLocal_pion.setX( TMath::Sin( track_pim->thetaDeg() * TMath::Pi()/180 )*TMath::Cos( track_pim->phiDeg() * TMath::Pi()/180 )); alphaLocal_pion.setY( TMath::Sin( track_pim->thetaDeg() * TMath::Pi()/180 )*TMath::Sin( track_pim->phiDeg() * TMath::Pi()/180 )); alphaLocal_pion.setZ( TMath::Cos( track_pim->thetaDeg() * TMath::Pi()/180 )); // direction vector in MDC system rLab_pion = HGeomVector(secTrans[track_pim->getHitData()->getSector()].transFrom(rLocal_pion)); // MDC --> LAB system alphaLab_pion = HGeomVector(secTrans[track_pim->getHitData()->getSector()].getRotMatrix()*alphaLocal_pion); // proton 1 rLocal_proton1.setX( track_p1->getR() * TMath::Cos( ( track_p1->phiDeg() + 90 ) * TMath::Pi()/180 ) ); rLocal_proton1.setY( track_p1->getR() * TMath::Sin( ( track_p1->phiDeg() + 90 ) * TMath::Pi()/180 ) ); rLocal_proton1.setZ( track_p1->getZ() ); // base vector in MDC system (punto) alphaLocal_proton1.setX( TMath::Sin( track_p1->thetaDeg() * TMath::Pi()/180 )*TMath::Cos( track_p1->phiDeg() * TMath::Pi()/180 )); alphaLocal_proton1.setY( TMath::Sin( track_p1->thetaDeg() * TMath::Pi()/180 )*TMath::Sin( track_p1->phiDeg() * TMath::Pi()/180 )); alphaLocal_proton1.setZ( TMath::Cos( track_p1->thetaDeg() * TMath::Pi()/180 ));// direction vector in MDC system rLab_proton1 = HGeomVector(secTrans[track_p1->getHitData()->getSector()].transFrom(rLocal_proton1)); // MDC --> LAB system alphaLab_proton1 = HGeomVector(secTrans[track_p1->getHitData()->getSector()].getRotMatrix()*alphaLocal_proton1); // proton 2 rLocal_proton2.setX( track_p2->getR() * TMath::Cos( ( track_p2->phiDeg() + 90 ) * TMath::Pi()/180 ) ); rLocal_proton2.setY( track_p2->getR() * TMath::Sin( ( track_p2->phiDeg() + 90 ) * TMath::Pi()/180 ) ); rLocal_proton2.setZ( track_p2->getZ() ); // base vector in MDC system alphaLocal_proton2.setX( TMath::Sin( track_p2->thetaDeg() * TMath::Pi()/180 )*TMath::Cos( track_p2->phiDeg() * TMath::Pi()/180 )); alphaLocal_proton2.setY( TMath::Sin( track_p2->thetaDeg() * TMath::Pi()/180 )*TMath::Sin( track_p2->phiDeg() * TMath::Pi()/180 )); alphaLocal_proton2.setZ( TMath::Cos( track_p2->thetaDeg() * TMath::Pi()/180 ));// direction vector in MDC system rLab_proton2 = HGeomVector(secTrans[track_p2->getHitData()->getSector()].transFrom(rLocal_proton2)); // MDC --> LAB system alphaLab_proton2 = HGeomVector(secTrans[track_p2->getHitData()->getSector()].getRotMatrix()*alphaLocal_proton2); // Fitter // proton 1 fFitter1.addLine(rLab_pion,alphaLab_pion); fFitter1.addLine(rLab_proton1,alphaLab_proton1); fFitter1.getVertex(vertex1); // proton 2 fFitter2.addLine(rLab_pion,alphaLab_pion); fFitter2.addLine(rLab_proton2,alphaLab_proton2); fFitter2.getVertex(vertex2); vtx_modulo1 = (sqrt(vertex1.getX()*vertex1.getX() + vertex1.getY()*vertex1.getY() + vertex1.getZ()*vertex1.getZ())); vtx_modulo2 = (sqrt(vertex2.getX()*vertex2.getX() + vertex2.getY()*vertex2.getY() + vertex2.getZ()*vertex2.getZ())); // Minimum Distance Float_t min_dist1 = 0, min_dist2 = 0; Float_t mom_pim=0, mom_x_pim=0, mom_y_pim=0, mom_z_pim=0;// pi- Float_t mom_prot1=0, mom_x_prot1=0, mom_y_prot1=0, mom_z_prot1=0;// proton 1 Float_t mom_prot2=0, mom_x_prot2=0, mom_y_prot2=0, mom_z_prot2=0;// proton 2 Float_t pos_x_pim=0, pos_y_pim=0, pos_z_pim=0;// pi- Float_t pos_x_prot1=0, pos_y_prot1=0, pos_z_prot1=0;// proton 1 Float_t pos_x_prot2=0, pos_y_prot2=0, pos_z_prot2=0;// proton 2 // Float_t px1=0, py1=0, pz1=0, p1=0;// pi // Float_t px2=0, py2=0, pz2=0, p2=0;// p // Float_t x1=0, y1=0, z1=0;// pi // Float_t x2=0, y2=0, z2=0;// p mom_pim = pim.M(); mom_prot1 = proton1.M(); mom_prot2 = proton2.M(); mom_x_pim = pim.Px()/mom_pim; mom_y_pim = pim.Py()/mom_pim; mom_z_pim = pim.Pz()/mom_pim; mom_x_prot1 = proton1.Px()/mom_prot1; mom_y_prot1 = proton1.Py()/mom_prot1; mom_z_prot1 = proton1.Pz()/mom_prot1; mom_x_prot2 = proton2.Px()/mom_prot2; mom_y_prot2 = proton2.Py()/mom_prot2; mom_z_prot2 = proton2.Pz()/mom_prot2; pos_x_pim = rLocal_pion.getX(); pos_y_pim = rLocal_pion.getY(); pos_z_pim = rLocal_pion.getZ(); pos_x_prot1 = rLocal_proton1.getX(); pos_y_prot1 = rLocal_proton1.getY(); pos_z_prot1 = rLocal_proton1.getZ(); pos_x_prot2 = rLocal_proton2.getX(); pos_y_prot2 = rLocal_proton2.getY(); pos_z_prot2 = rLocal_proton2.getZ(); // x1 = pi_vertex.X();// x2 = p_vertex.X(); // y1 = pi_vertex.Y();// y2 = p_vertex.Y(); // z1 = pi_vertex.Z();// z2 = p_vertex.Z(); Float_t saul1 = sqrt(mom_y_pim*mom_y_pim*mom_z_prot1*mom_z_prot1 - 2*mom_y_pim*mom_z_prot1*mom_z_pim*mom_y_prot1 + mom_z_pim*mom_z_pim*mom_y_prot1*mom_y_prot1 + mom_z_pim*mom_z_pim*mom_x_prot1*mom_x_prot1 - 2*mom_z_pim*mom_x_prot1*mom_x_pim*mom_z_prot1 + mom_x_pim*mom_x_pim*mom_z_prot1*mom_z_prot1 + mom_x_pim*mom_x_pim*mom_y_prot1*mom_y_prot1 - 2*mom_x_pim*mom_y_prot1*mom_y_pim*mom_x_prot1 + mom_y_pim*mom_y_pim*mom_x_prot1*mom_x_prot1); // std::cout<<saul<<std::endl; if ( saul1==0 ) continue; min_dist1 = fabs(mom_y_pim*mom_z_prot1*pos_x_pim - mom_y_pim*mom_z_prot1*pos_x_prot1 - mom_z_pim*mom_y_prot1*pos_x_pim + mom_z_pim*mom_y_prot1*pos_x_prot1 - mom_x_pim*mom_z_prot1*pos_y_pim + mom_x_pim*mom_z_prot1*pos_y_prot1 + mom_x_pim*mom_y_prot1*pos_z_pim - mom_x_pim*mom_y_prot1*pos_z_prot1 + mom_z_pim*mom_x_prot1*pos_y_pim - mom_z_pim*mom_x_prot1*pos_y_prot1 - mom_y_pim*mom_x_prot1*pos_z_pim + mom_y_pim*mom_x_prot1*pos_z_prot1)/ saul1; Float_t saul2 = sqrt(mom_y_pim*mom_y_pim*mom_z_prot2*mom_z_prot2 - 2*mom_y_pim*mom_z_prot2*mom_z_pim*mom_y_prot2 + mom_z_pim*mom_z_pim*mom_y_prot2*mom_y_prot2 + mom_z_pim*mom_z_pim*mom_x_prot2*mom_x_prot2 - 2*mom_z_pim*mom_x_prot2*mom_x_pim*mom_z_prot2 + mom_x_pim*mom_x_pim*mom_z_prot1*mom_z_prot2 + mom_x_pim*mom_x_pim*mom_y_prot2*mom_y_prot2 - 2*mom_x_pim*mom_y_prot2*mom_y_pim*mom_x_prot2 + mom_y_pim*mom_y_pim*mom_x_prot2*mom_x_prot2); // std::cout<<saul<<std::endl; if ( saul2==0 ) continue; min_dist2 = fabs(mom_y_pim*mom_z_prot2*pos_x_pim - mom_y_pim*mom_z_prot2*pos_x_prot2 - mom_z_pim*mom_y_prot2*pos_x_pim + mom_z_pim*mom_y_prot2*pos_x_prot2 - mom_x_pim*mom_z_prot2*pos_y_pim + mom_x_pim*mom_z_prot2*pos_y_prot2 + mom_x_pim*mom_y_prot2*pos_z_pim - mom_x_pim*mom_y_prot2*pos_z_prot2 + mom_z_pim*mom_x_prot2*pos_y_pim - mom_z_pim*mom_x_prot2*pos_y_prot2 - mom_y_pim*mom_x_prot2*pos_z_pim + mom_y_pim*mom_x_prot2*pos_z_prot2)/ saul2; // Cuts if (min_dist1 > 100) mylist->removeComb(); if (min_dist2 > 100) mylist->removeComb(); if (vertex1.getX() < -600 || vertex1.getX() > 600) mylist->removeComb(); if (vertex1.getY() < -600 || vertex1.getY() > 600) mylist->removeComb(); if (vertex1.getZ() < -2000) mylist->removeComb(); if (vertex2.getX() < -600 || vertex2.getX() > 600) mylist->removeComb(); if (vertex2.getY() < -600 || vertex2.getY() > 600) mylist->removeComb(); if (vertex2.getZ() < -2000) mylist->removeComb(); if (vtx_modulo1 > 4000) mylist->removeComb(); if (vtx_modulo2 > 4000) mylist->removeComb(); // Remove unphysical events here: // if (p1kp_miss.M2() < p1pim_invmass.M2()) // mylist->removeComb(); // if (p2kp_miss.M2() < p2pim_invmass.M2()) // mylist->removeComb(); // if (pp_miss.M2() < pippim_invmass.M2()) // mylist->removeComb(); */ } //END getIterStatus() == kTRUE } //END Iterator if (exitIdx > -1) return kTRUE; return kFALSE; } Bool_t HHypPKpLambdaMiss0Alg::init() { return kTRUE; } Bool_t HHypPKpLambdaMiss0Alg::reinit() { return kTRUE; } Bool_t HHypPKpLambdaMiss0Alg::finalize() { return kTRUE; }