00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035 #include <cstdlib>
00036 #include <iostream>
00037 #include <map>
00038 #include <string>
00039
00040 #include "TChain.h"
00041 #include "TFile.h"
00042 #include "TTree.h"
00043 #include "TString.h"
00044 #include "TObjString.h"
00045 #include "TSystem.h"
00046 #include "TROOT.h"
00047
00048 #include "TMVA/Factory.h"
00049 #include "TMVA/Tools.h"
00050
00051
00052 Bool_t ReadDataFromAsciiIFormat = kFALSE;
00053
00054 int main( int argc, char** argv )
00055 {
00056
00057
00058 std::map<std::string,int> Use;
00059
00060
00061 Use["Cuts"] = 1;
00062 Use["CutsD"] = 1;
00063 Use["CutsPCA"] = 0;
00064 Use["CutsGA"] = 0;
00065 Use["CutsSA"] = 0;
00066
00067
00068 Use["Likelihood"] = 1;
00069 Use["LikelihoodD"] = 0;
00070 Use["LikelihoodPCA"] = 1;
00071 Use["LikelihoodKDE"] = 0;
00072 Use["LikelihoodMIX"] = 0;
00073
00074
00075 Use["PDERS"] = 1;
00076 Use["PDERSD"] = 0;
00077 Use["PDERSPCA"] = 0;
00078 Use["PDEFoam"] = 1;
00079 Use["PDEFoamBoost"] = 0;
00080 Use["KNN"] = 1;
00081
00082
00083 Use["LD"] = 1;
00084 Use["Fisher"] = 0;
00085 Use["FisherG"] = 0;
00086 Use["BoostedFisher"] = 0;
00087 Use["HMatrix"] = 0;
00088
00089
00090 Use["FDA_GA"] = 1;
00091 Use["FDA_SA"] = 0;
00092 Use["FDA_MC"] = 0;
00093 Use["FDA_MT"] = 0;
00094 Use["FDA_GAMT"] = 0;
00095 Use["FDA_MCMT"] = 0;
00096
00097
00098 Use["MLP"] = 0;
00099 Use["MLPBFGS"] = 0;
00100 Use["MLPBNN"] = 1;
00101 Use["CFMlpANN"] = 0;
00102 Use["TMlpANN"] = 0;
00103
00104
00105 Use["SVM"] = 1;
00106
00107
00108 Use["BDT"] = 1;
00109 Use["BDTG"] = 0;
00110 Use["BDTB"] = 0;
00111 Use["BDTD"] = 0;
00112
00113
00114 Use["RuleFit"] = 1;
00115
00116
00117 std::cout << std::endl << "==> Start TMVAClassification" << std::endl;
00118
00119 bool batchMode(false);
00120 bool useDefaultMethods(true);
00121
00122
00123 for (int i=1; i<argc; i++) {
00124 std::string regMethod(argv[i]);
00125 if(regMethod=="-b" || regMethod=="--batch") {
00126 batchMode=true;
00127 continue;
00128 }
00129 if (Use.find(regMethod) == Use.end()) {
00130 std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
00131 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
00132 std::cout << std::endl;
00133 return 1;
00134 }
00135 useDefaultMethods = false;
00136 }
00137
00138 if (!useDefaultMethods) {
00139 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
00140 for (int i=1; i<argc; i++) {
00141 std::string regMethod(argv[i]);
00142 if(regMethod=="-b" || regMethod=="--batch") continue;
00143 Use[regMethod] = 1;
00144 }
00145 }
00146
00147
00148
00149
00150
00151
00152 TString outfileName( "TMVA.root" );
00153 TFile* outputFile = TFile::Open( outfileName, "RECREATE" );
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165 TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
00166 "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176 factory->AddVariable( "myvar1 := var1+var2", 'F' );
00177 factory->AddVariable( "myvar2 := var1-var2", "Expression 2", "", 'F' );
00178 factory->AddVariable( "var3", "Variable 3", "units", 'F' );
00179 factory->AddVariable( "var4", "Variable 4", "units", 'F' );
00180
00181
00182
00183
00184 factory->AddSpectator( "spec1 := var1*2", "Spectator 1", "units", 'F' );
00185 factory->AddSpectator( "spec2 := var1*3", "Spectator 2", "units", 'F' );
00186
00187
00188
00189 TString fname = "./tmva_class_example.root";
00190
00191 if (gSystem->AccessPathName( fname ))
00192 gSystem->Exec("wget http://root.cern.ch/files/tmva_class_example.root");
00193
00194 TFile *input = TFile::Open( fname );
00195
00196 std::cout << "--- TMVAClassification : Using input file: " << input->GetName() << std::endl;
00197
00198
00199
00200 TTree *signal = (TTree*)input->Get("TreeS");
00201 TTree *background = (TTree*)input->Get("TreeB");
00202
00203
00204 Double_t signalWeight = 1.0;
00205 Double_t backgroundWeight = 1.0;
00206
00207
00208 factory->AddSignalTree ( signal, signalWeight );
00209 factory->AddBackgroundTree( background, backgroundWeight );
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
00253 factory->SetBackgroundWeightExpression("weight");
00254
00255
00256 TCut mycuts = "";
00257 TCut mycutb = "";
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267 factory->PrepareTrainingAndTestTree( mycuts, mycutb,
00268 "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278 if (Use["Cuts"])
00279 factory->BookMethod( TMVA::Types::kCuts, "Cuts",
00280 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );
00281
00282 if (Use["CutsD"])
00283 factory->BookMethod( TMVA::Types::kCuts, "CutsD",
00284 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );
00285
00286 if (Use["CutsPCA"])
00287 factory->BookMethod( TMVA::Types::kCuts, "CutsPCA",
00288 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" );
00289
00290 if (Use["CutsGA"])
00291 factory->BookMethod( TMVA::Types::kCuts, "CutsGA",
00292 "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" );
00293
00294 if (Use["CutsSA"])
00295 factory->BookMethod( TMVA::Types::kCuts, "CutsSA",
00296 "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
00297
00298
00299 if (Use["Likelihood"])
00300 factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood",
00301 "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
00302
00303
00304 if (Use["LikelihoodD"])
00305 factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodD",
00306 "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" );
00307
00308
00309 if (Use["LikelihoodPCA"])
00310 factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodPCA",
00311 "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" );
00312
00313
00314 if (Use["LikelihoodKDE"])
00315 factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodKDE",
00316 "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" );
00317
00318
00319 if (Use["LikelihoodMIX"])
00320 factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodMIX",
00321 "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" );
00322
00323
00324
00325
00326
00327 if (Use["PDERS"])
00328 factory->BookMethod( TMVA::Types::kPDERS, "PDERS",
00329 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" );
00330
00331 if (Use["PDERSD"])
00332 factory->BookMethod( TMVA::Types::kPDERS, "PDERSD",
00333 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" );
00334
00335 if (Use["PDERSPCA"])
00336 factory->BookMethod( TMVA::Types::kPDERS, "PDERSPCA",
00337 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" );
00338
00339
00340 if (Use["PDEFoam"])
00341 factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam",
00342 "H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0333:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );
00343
00344 if (Use["PDEFoamBoost"])
00345 factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoamBoost",
00346 "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" );
00347
00348
00349 if (Use["KNN"])
00350 factory->BookMethod( TMVA::Types::kKNN, "KNN",
00351 "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
00352
00353
00354 if (Use["HMatrix"])
00355 factory->BookMethod( TMVA::Types::kHMatrix, "HMatrix", "!H:!V" );
00356
00357
00358 if (Use["LD"])
00359 factory->BookMethod( TMVA::Types::kLD, "LD", "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
00360
00361
00362 if (Use["Fisher"])
00363 factory->BookMethod( TMVA::Types::kFisher, "Fisher", "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
00364
00365
00366 if (Use["FisherG"])
00367 factory->BookMethod( TMVA::Types::kFisher, "FisherG", "H:!V:VarTransform=Gauss" );
00368
00369
00370 if (Use["BoostedFisher"])
00371 factory->BookMethod( TMVA::Types::kFisher, "BoostedFisher", "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2");
00372
00373
00374 if (Use["FDA_MC"])
00375 factory->BookMethod( TMVA::Types::kFDA, "FDA_MC",
00376 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );
00377
00378 if (Use["FDA_GA"])
00379 factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
00380 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );
00381
00382 if (Use["FDA_SA"])
00383 factory->BookMethod( TMVA::Types::kFDA, "FDA_SA",
00384 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
00385
00386 if (Use["FDA_MT"])
00387 factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
00388 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
00389
00390 if (Use["FDA_GAMT"])
00391 factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
00392 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
00393
00394 if (Use["FDA_MCMT"])
00395 factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT",
00396 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );
00397
00398
00399 if (Use["MLP"])
00400 factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );
00401
00402 if (Use["MLPBFGS"])
00403 factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );
00404
00405 if (Use["MLPBNN"])
00406 factory->BookMethod( TMVA::Types::kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" );
00407
00408
00409 if (Use["CFMlpANN"])
00410 factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N" );
00411
00412
00413 if (Use["TMlpANN"])
00414 factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3" );
00415
00416
00417 if (Use["SVM"])
00418 factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );
00419
00420
00421 if (Use["BDTG"])
00422 factory->BookMethod( TMVA::Types::kBDT, "BDTG",
00423 "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:NNodesMax=5" );
00424
00425 if (Use["BDT"])
00426 factory->BookMethod( TMVA::Types::kBDT, "BDT",
00427 "!H:!V:NTrees=850:nEventsMin=150:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
00428
00429 if (Use["BDTB"])
00430 factory->BookMethod( TMVA::Types::kBDT, "BDTB",
00431 "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" );
00432
00433 if (Use["BDTD"])
00434 factory->BookMethod( TMVA::Types::kBDT, "BDTD",
00435 "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" );
00436
00437
00438 if (Use["RuleFit"])
00439 factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
00440 "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450
00451
00452
00453
00454
00455
00456
00457
00458 factory->TrainAllMethods();
00459
00460
00461 factory->TestAllMethods();
00462
00463
00464 factory->EvaluateAllMethods();
00465
00466
00467
00468
00469 outputFile->Close();
00470
00471 std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl
00472 << "==> TMVAClassification is done!" << std::endl
00473 << std::endl
00474 << "==> To view the results, launch the GUI: \"root -l ./TMVAGui.C\"" << std::endl
00475 << std::endl;
00476
00477
00478 delete factory;
00479 }
00480