00001 // @(#)root/mathcore:$Id: PdfFuncMathCore.h 37441 2010-12-09 16:27:54Z moneta $ 00002 // Authors: Andras Zsenei & Lorenzo Moneta 06/2005 00003 00004 /********************************************************************** 00005 * * 00006 * Copyright (c) 2005 , LCG ROOT MathLib Team * 00007 * * 00008 * * 00009 **********************************************************************/ 00010 00011 00012 00013 /** 00014 00015 Probability density functions, cumulative distribution functions 00016 and their inverses (quantiles) for various statistical distributions (continuous and discrete). 00017 Whenever possible the conventions followed are those of the 00018 CRC Concise Encyclopedia of Mathematics, Second Edition 00019 (or <A HREF="http://mathworld.wolfram.com/">Mathworld</A>). 00020 By convention the distributions are centered around 0, so for 00021 example in the case of a Gaussian there is no parameter mu. The 00022 user must calculate the shift himself if he wishes. 00023 00024 MathCore provides the majority of the probability density functions, of the 00025 cumulative distributions and of the quantiles (inverses of the cumulatives). 00026 Additional distributions are also provided by the 00027 <A HREF="../../MathMore/html/group__StatFunc.html">MathMore</A> library. 00028 00029 00030 @defgroup StatFunc Statistical functions 00031 00032 */ 00033 00034 00035 00036 #if defined(__CINT__) && !defined(__MAKECINT__) 00037 // avoid to include header file when using CINT 00038 #ifndef _WIN32 00039 #include "../lib/libMathCore.so" 00040 #else 00041 #include "../bin/libMathCore.dll" 00042 #endif 00043 00044 #else 00045 00046 00047 #ifndef ROOT_Math_PdfFuncMathCore 00048 #define ROOT_Math_PdfFuncMathCore 00049 00050 00051 00052 00053 namespace ROOT { 00054 namespace Math { 00055 00056 00057 00058 /** @defgroup PdfFunc Probability Density Functions (PDF) from MathCore 00059 * @ingroup StatFunc 00060 * Probability density functions of various statistical distributions 00061 * (continuous and discrete). 00062 * The probability density function returns the probability that 00063 * the variate has the value x. 00064 * In statistics the PDF is also called the frequency function. 00065 * 00066 * 00067 */ 00068 00069 /** @name Probability Density Functions from MathCore 00070 * Additional PDF's are provided in the MathMore library 00071 * (see PDF functions from MathMore) 00072 */ 00073 00074 //@{ 00075 00076 /** 00077 00078 Probability density function of the beta distribution. 00079 00080 \f[ p(x) = \frac{\Gamma (a + b) } {\Gamma(a)\Gamma(b) } x ^{a-1} (1 - x)^{b-1} \f] 00081 00082 for \f$0 \leq x \leq 1 \f$. For detailed description see 00083 <A HREF="http://mathworld.wolfram.com/BetaDistribution.html"> 00084 Mathworld</A>. 00085 00086 @ingroup PdfFunc 00087 00088 */ 00089 00090 double beta_pdf(double x, double a, double b); 00091 00092 00093 /** 00094 00095 Probability density function of the binomial distribution. 00096 00097 \f[ p(k) = \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k} \f] 00098 00099 for \f$ 0 \leq k \leq n \f$. For detailed description see 00100 <A HREF="http://mathworld.wolfram.com/BinomialDistribution.html"> 00101 Mathworld</A>. 00102 00103 @ingroup PdfFunc 00104 00105 */ 00106 00107 double binomial_pdf(unsigned int k, double p, unsigned int n); 00108 00109 00110 /** 00111 00112 Probability density function of the negative binomial distribution. 00113 00114 \f[ p(k) = \frac{(k+n-1)!}{k! (n-1)!} p^{n} (1-p)^{k} \f] 00115 00116 For detailed description see 00117 <A HREF="http://mathworld.wolfram.com/NegativeBinomialDistribution.html"> 00118 Mathworld</A> (where $k \to x$ and $n \to r$). 00119 The distribution in <A HREF="http://en.wikipedia.org/wiki/Negative_binomial_distribution"> 00120 Wikipedia</A> is defined with a $p$ corresponding to $1-p$ in this case. 00121 00122 00123 @ingroup PdfFunc 00124 00125 */ 00126 00127 double negative_binomial_pdf(unsigned int k, double p, double n); 00128 00129 00130 00131 /** 00132 00133 Probability density function of Breit-Wigner distribution, which is similar, just 00134 a different definition of the parameters, to the Cauchy distribution 00135 (see #cauchy_pdf ) 00136 00137 \f[ p(x) = \frac{1}{\pi} \frac{\frac{1}{2} \Gamma}{x^2 + (\frac{1}{2} \Gamma)^2} \f] 00138 00139 00140 @ingroup PdfFunc 00141 00142 */ 00143 00144 double breitwigner_pdf(double x, double gamma, double x0 = 0); 00145 00146 00147 00148 00149 /** 00150 00151 Probability density function of the Cauchy distribution which is also 00152 called Lorentzian distribution. 00153 00154 00155 \f[ p(x) = \frac{1}{\pi} \frac{ b }{ (x-m)^2 + b^2} \f] 00156 00157 For detailed description see 00158 <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html"> 00159 Mathworld</A>. It is also related to the #breitwigner_pdf which 00160 will call the same implementation. 00161 00162 @ingroup PdfFunc 00163 00164 */ 00165 00166 double cauchy_pdf(double x, double b = 1, double x0 = 0); 00167 00168 00169 00170 00171 /** 00172 00173 Probability density function of the \f$\chi^2\f$ distribution with \f$r\f$ 00174 degrees of freedom. 00175 00176 \f[ p_r(x) = \frac{1}{\Gamma(r/2) 2^{r/2}} x^{r/2-1} e^{-x/2} \f] 00177 00178 for \f$x \geq 0\f$. For detailed description see 00179 <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html"> 00180 Mathworld</A>. 00181 00182 @ingroup PdfFunc 00183 00184 */ 00185 00186 double chisquared_pdf(double x, double r, double x0 = 0); 00187 00188 00189 00190 00191 /** 00192 00193 Probability density function of the exponential distribution. 00194 00195 \f[ p(x) = \lambda e^{-\lambda x} \f] 00196 00197 for x>0. For detailed description see 00198 <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html"> 00199 Mathworld</A>. 00200 00201 00202 @ingroup PdfFunc 00203 00204 */ 00205 00206 double exponential_pdf(double x, double lambda, double x0 = 0); 00207 00208 00209 00210 00211 /** 00212 00213 Probability density function of the F-distribution. 00214 00215 \f[ p_{n,m}(x) = \frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2}) \Gamma(\frac{m}{2})} n^{n/2} m^{m/2} x^{n/2 -1} (m+nx)^{-(n+m)/2} \f] 00216 00217 for x>=0. For detailed description see 00218 <A HREF="http://mathworld.wolfram.com/F-Distribution.html"> 00219 Mathworld</A>. 00220 00221 @ingroup PdfFunc 00222 00223 */ 00224 00225 00226 double fdistribution_pdf(double x, double n, double m, double x0 = 0); 00227 00228 00229 00230 00231 /** 00232 00233 Probability density function of the gamma distribution. 00234 00235 \f[ p(x) = {1 \over \Gamma(\alpha) \theta^{\alpha}} x^{\alpha-1} e^{-x/\theta} \f] 00236 00237 for x>0. For detailed description see 00238 <A HREF="http://mathworld.wolfram.com/GammaDistribution.html"> 00239 Mathworld</A>. 00240 00241 @ingroup PdfFunc 00242 00243 */ 00244 00245 double gamma_pdf(double x, double alpha, double theta, double x0 = 0); 00246 00247 00248 00249 00250 /** 00251 00252 Probability density function of the normal (Gaussian) distribution. 00253 00254 \f[ p(x) = {1 \over \sqrt{2 \pi \sigma^2}} e^{-x^2 / 2\sigma^2} \f] 00255 00256 For detailed description see 00257 <A HREF="http://mathworld.wolfram.com/NormalDistribution.html"> 00258 Mathworld</A>. It can also be evaluated using #normal_pdf which will 00259 call the same implementation. 00260 00261 @ingroup PdfFunc 00262 00263 */ 00264 00265 double gaussian_pdf(double x, double sigma = 1, double x0 = 0); 00266 00267 00268 00269 /** 00270 00271 Probability density function of the Landau distribution: 00272 \f[ p(x) = \frac{1}{\xi} \phi (\lambda) \f] 00273 with 00274 \f[ \phi(\lambda) = \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} e^{\lambda s + s \log{s}} ds\f] 00275 where \f$\lambda = (x-x_0)/\xi\f$. For a detailed description see 00276 K.S. Kölbig and B. Schorr, A program package for the Landau distribution, 00277 <A HREF="http://dx.doi.org/10.1016/0010-4655(84)90085-7">Computer Phys. Comm. 31 (1984) 97-111</A> 00278 <A HREF="http://dx.doi.org/10.1016/j.cpc.2008.03.002">[Erratum-ibid. 178 (2008) 972]</A>. 00279 The same algorithms as in 00280 <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g110/top.html"> 00281 CERNLIB</A> (DENLAN) is used 00282 00283 @param x The argument \f$x\f$ 00284 @param xi The width parameter \f$\xi\f$ 00285 @param x0 The location parameter \f$x_0\f$ 00286 00287 @ingroup PdfFunc 00288 00289 */ 00290 00291 double landau_pdf(double x, double xi = 1, double x0 = 0); 00292 00293 00294 00295 /** 00296 00297 Probability density function of the lognormal distribution. 00298 00299 \f[ p(x) = {1 \over x \sqrt{2 \pi s^2} } e^{-(\ln{x} - m)^2/2 s^2} \f] 00300 00301 for x>0. For detailed description see 00302 <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html"> 00303 Mathworld</A>. 00304 @param s scale parameter (not the sigma of the distribution which is not even defined) 00305 @param x0 location parameter, corresponds approximatly to the most probable value. For x0 = 0, sigma = 1, the x_mpv = -0.22278 00306 00307 @ingroup PdfFunc 00308 00309 */ 00310 00311 double lognormal_pdf(double x, double m, double s, double x0 = 0); 00312 00313 00314 00315 00316 /** 00317 00318 Probability density function of the normal (Gaussian) distribution. 00319 00320 \f[ p(x) = {1 \over \sqrt{2 \pi \sigma^2}} e^{-x^2 / 2\sigma^2} \f] 00321 00322 For detailed description see 00323 <A HREF="http://mathworld.wolfram.com/NormalDistribution.html"> 00324 Mathworld</A>. It can also be evaluated using #gaussian_pdf which will call the same 00325 implementation. 00326 00327 @ingroup PdfFunc 00328 00329 */ 00330 00331 double normal_pdf(double x, double sigma =1, double x0 = 0); 00332 00333 00334 /** 00335 00336 Probability density function of the Poisson distribution. 00337 00338 \f[ p(n) = \frac{\mu^n}{n!} e^{- \mu} \f] 00339 00340 For detailed description see 00341 <A HREF="http://mathworld.wolfram.com/PoissonDistribution.html"> 00342 Mathworld</A>. 00343 00344 @ingroup PdfFunc 00345 00346 */ 00347 00348 double poisson_pdf(unsigned int n, double mu); 00349 00350 00351 00352 00353 /** 00354 00355 Probability density function of Student's t-distribution. 00356 00357 \f[ p_{r}(x) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{r \pi}\Gamma(\frac{r}{2})} \left( 1+\frac{x^2}{r}\right)^{-(r+1)/2} \f] 00358 00359 for \f$k \geq 0\f$. For detailed description see 00360 <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html"> 00361 Mathworld</A>. 00362 00363 @ingroup PdfFunc 00364 00365 */ 00366 00367 double tdistribution_pdf(double x, double r, double x0 = 0); 00368 00369 00370 00371 00372 /** 00373 00374 Probability density function of the uniform (flat) distribution. 00375 00376 \f[ p(x) = {1 \over (b-a)} \f] 00377 00378 if \f$a \leq x<b\f$ and 0 otherwise. For detailed description see 00379 <A HREF="http://mathworld.wolfram.com/UniformDistribution.html"> 00380 Mathworld</A>. 00381 00382 @ingroup PdfFunc 00383 00384 */ 00385 00386 double uniform_pdf(double x, double a, double b, double x0 = 0); 00387 00388 00389 00390 } // namespace Math 00391 } // namespace ROOT 00392 00393 00394 00395 #endif // ROOT_Math_PdfFunc 00396 00397 #endif // if defined (__CINT__) && !defined(__MAKECINT__)