00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013 #ifndef __CINT__
00014 #include "RooGlobalFunc.h"
00015 #endif
00016 #include "RooRealVar.h"
00017 #include "RooDataSet.h"
00018 #include "RooGaussian.h"
00019 #include "RooConstVar.h"
00020 #include "RooAddPdf.h"
00021 #include "RooChebychev.h"
00022 #include "RooFitResult.h"
00023 #include "TCanvas.h"
00024 #include "TAxis.h"
00025 #include "RooPlot.h"
00026 #include "TFile.h"
00027 #include "TStyle.h"
00028 #include "TH2.h"
00029 #include "TMatrixDSym.h"
00030
00031 using namespace RooFit ;
00032
00033
00034 void rf607_fitresult()
00035 {
00036
00037
00038
00039
00040 RooRealVar x("x","x",0,10) ;
00041
00042
00043 RooRealVar mean("mean","mean of gaussians",5,-10,10) ;
00044 RooRealVar sigma1("sigma1","width of gaussians",0.5,0.1,10) ;
00045 RooRealVar sigma2("sigma2","width of gaussians",1,0.1,10) ;
00046
00047 RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
00048 RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
00049
00050
00051 RooRealVar a0("a0","a0",0.5,0.,1.) ;
00052 RooRealVar a1("a1","a1",-0.2) ;
00053 RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
00054
00055
00056 RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
00057 RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
00058
00059
00060 RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ;
00061 RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ;
00062
00063
00064 RooDataSet* data = model.generate(x,1000) ;
00065
00066
00067
00068
00069
00070
00071
00072 RooFitResult* r = model.fitTo(*data,Save()) ;
00073
00074
00075
00076
00077
00078
00079
00080 r->Print() ;
00081
00082
00083
00084 r->Print("v") ;
00085
00086
00087
00088
00089
00090
00091
00092 gStyle->SetOptStat(0) ;
00093 gStyle->SetPalette(1) ;
00094 TH2* hcorr = r->correlationHist() ;
00095
00096
00097
00098 RooPlot* frame = new RooPlot(sigma1,sig1frac,0.45,0.60,0.65,0.90) ;
00099 frame->SetTitle("Covariance between sigma1 and sig1frac") ;
00100 r->plotOn(frame,sigma1,sig1frac,"ME12ABHV") ;
00101
00102
00103
00104
00105
00106
00107
00108 cout << "EDM = " << r->edm() << endl ;
00109 cout << "-log(L) at minimum = " << r->minNll() << endl ;
00110
00111
00112 cout << "final value of floating parameters" << endl ;
00113 r->floatParsFinal().Print("s") ;
00114
00115
00116 cout << "correlation between sig1frac and a0 is " << r->correlation(sig1frac,a0) << endl ;
00117 cout << "correlation between bkgfrac and mean is " << r->correlation("bkgfrac","mean") << endl ;
00118
00119
00120 const TMatrixDSym& cor = r->correlationMatrix() ;
00121 const TMatrixDSym& cov = r->covarianceMatrix() ;
00122
00123
00124 cout << "correlation matrix" << endl ;
00125 cor.Print() ;
00126 cout << "covariance matrix" << endl ;
00127 cov.Print() ;
00128
00129
00130
00131
00132
00133
00134 TFile f("rf607_fitresult.root","RECREATE") ;
00135 r->Write("rf607") ;
00136 f.Close() ;
00137
00138
00139
00140
00141
00142 TCanvas* c = new TCanvas("rf607_fitresult","rf607_fitresult",800,400) ;
00143 c->Divide(2) ;
00144 c->cd(1) ; gPad->SetLeftMargin(0.15) ; hcorr->GetYaxis()->SetTitleOffset(1.4) ; hcorr->Draw("colz") ;
00145 c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ;
00146
00147 }