00001 #include "TH1.h"
00002 #include "TF1.h"
00003 #include "TF2.h"
00004 #include "TMath.h"
00005 #include "TSystem.h"
00006 #include "TRandom3.h"
00007 #include "TTree.h"
00008 #include "TROOT.h"
00009
00010 #include "Fit/BinData.h"
00011 #include "Fit/UnBinData.h"
00012
00013 #include "Fit/Fitter.h"
00014 #include "HFitInterface.h"
00015
00016 #include "Math/IParamFunction.h"
00017 #include "Math/WrappedTF1.h"
00018 #include "Math/WrappedMultiTF1.h"
00019 #include "Math/WrappedParamFunction.h"
00020 #include "Math/MultiDimParamFunctionAdapter.h"
00021
00022 #include "TGraphErrors.h"
00023
00024 #include "TStyle.h"
00025
00026 #include "TSeqCollection.h"
00027
00028 #include "Math/Polynomial.h"
00029 #include "Math/DistFunc.h"
00030
00031 #include <string>
00032 #include <iostream>
00033
00034 #include "TStopwatch.h"
00035
00036 #include "TVirtualFitter.h"
00037 #include "TFitterMinuit.h"
00038
00039
00040
00041 #include "GaussFunction.h"
00042
00043 #include "RooDataHist.h"
00044 #include "RooDataSet.h"
00045 #include "RooRealVar.h"
00046 #include "RooGaussian.h"
00047 #include "RooMinuit.h"
00048 #include "RooChi2Var.h"
00049 #include "RooGlobalFunc.h"
00050 #include "RooFitResult.h"
00051 #include "RooProdPdf.h"
00052
00053 #include <cassert>
00054
00055 #include "MinimizerTypes.h"
00056
00057
00058
00059 int nfit;
00060 const int N = 20;
00061 double iniPar[2*N];
00062
00063
00064 void printData(const ROOT::Fit::UnBinData & data) {
00065 for (unsigned int i = 0; i < data.Size(); ++i) {
00066 std::cout << data.Coords(i)[0] << "\t";
00067 }
00068 std::cout << "\ndata size is " << data.Size() << std::endl;
00069 }
00070
00071 void printResult(int iret) {
00072 std::cout << "\n************************************************************\n";
00073 std::cout << "Test\t\t\t\t";
00074 if (iret == 0) std::cout << "OK";
00075 else std::cout << "FAILED";
00076 std::cout << "\n************************************************************\n";
00077 }
00078
00079 bool USE_BRANCH = false;
00080 ROOT::Fit::UnBinData * FillUnBinData(TTree * tree, bool copyData = true, unsigned int dim = 1 ) {
00081
00082
00083 ROOT::Fit::UnBinData * d = 0;
00084
00085 if (std::string(tree->GetName()) == "t2") {
00086 d = new ROOT::Fit::UnBinData();
00087
00088 unsigned int n = tree->GetEntries();
00089 #ifdef DEBUG
00090 std::cout << "number of unbin data is " << n << " of dim " << N << std::endl;
00091 #endif
00092 d->Initialize(n,N);
00093 TBranch * bx = tree->GetBranch("x");
00094 double vx[N];
00095 bx->SetAddress(vx);
00096 std::vector<double> m(N);
00097 for (int unsigned i = 0; i < n; ++i) {
00098 bx->GetEntry(i);
00099 d->Add(vx);
00100 for (int j = 0; j < N; ++j)
00101 m[j] += vx[j];
00102 }
00103
00104 #ifdef DEBUG
00105 std::cout << "average values of means :\n";
00106 for (int j = 0; j < N; ++j)
00107 std::cout << m[j]/n << " ";
00108 std::cout << "\n";
00109 #endif
00110
00111 return d;
00112 }
00113 if (USE_BRANCH)
00114 {
00115 d = new ROOT::Fit::UnBinData();
00116 unsigned int n = tree->GetEntries();
00117
00118
00119 if (dim == 2) {
00120 d->Initialize(n,2);
00121 TBranch * bx = tree->GetBranch("x");
00122 TBranch * by = tree->GetBranch("y");
00123 double v[2];
00124 bx->SetAddress(&v[0]);
00125 by->SetAddress(&v[1]);
00126 for (int unsigned i = 0; i < n; ++i) {
00127 bx->GetEntry(i);
00128 by->GetEntry(i);
00129 d->Add(v);
00130 }
00131 }
00132 else if (dim == 1) {
00133 d->Initialize(n,1);
00134 TBranch * bx = tree->GetBranch("x");
00135 double v[1];
00136 bx->SetAddress(&v[0]);
00137 for (int unsigned i = 0; i < n; ++i) {
00138 bx->GetEntry(i);
00139 d->Add(v);
00140 }
00141 }
00142
00143 return d;
00144
00145
00146 }
00147 else {
00148 tree->SetEstimate(tree->GetEntries());
00149
00150
00151 if (dim == 2) {
00152 tree->Draw("x:y",0,"goff");
00153 double * x = tree->GetV1();
00154 double * y = tree->GetV2();
00155
00156 if (x == 0 || y == 0) {
00157 USE_BRANCH= true;
00158 return FillUnBinData(tree, true, dim);
00159 }
00160
00161
00162
00163 unsigned int n = tree->GetSelectedRows();
00164
00165 if (copyData) {
00166 d = new ROOT::Fit::UnBinData(n,2);
00167 double vx[2];
00168 for (int unsigned i = 0; i < n; ++i) {
00169 vx[0] = x[i];
00170 vx[1] = y[i];
00171 d->Add(vx);
00172 }
00173 }
00174 else
00175 d = new ROOT::Fit::UnBinData(n,x,y);
00176
00177 }
00178 else if ( dim == 1) {
00179
00180 tree->Draw("x",0,"goff");
00181 double * x = tree->GetV1();
00182
00183 if (x == 0) {
00184 USE_BRANCH= true;
00185 return FillUnBinData(tree, true, dim);
00186 }
00187 unsigned int n = tree->GetSelectedRows();
00188
00189 if (copyData) {
00190 d = new ROOT::Fit::UnBinData(n,1);
00191 for (int unsigned i = 0; i < n; ++i) {
00192 d->Add(x[i]);
00193 }
00194 }
00195 else
00196 d = new ROOT::Fit::UnBinData(n,x);
00197 }
00198 return d;
00199 }
00200
00201
00202 return 0;
00203 }
00204
00205
00206
00207
00208
00209 template <class T>
00210 void printData(const T & data) {
00211 for (typename T::const_iterator itr = data.begin(); itr != data.end(); ++itr) {
00212 std::cout << itr->Coords()[0] << " " << itr->Value() << " " << itr->Error() << std::endl;
00213 }
00214 std::cout << "\ndata size is " << data.Size() << std::endl;
00215 }
00216
00217
00218
00219
00220 typedef ROOT::Math::IParamMultiFunction Func;
00221 template <class MinType, class T>
00222 int DoBinFit(T * hist, Func & func, bool debug = false, bool useGrad = false) {
00223
00224
00225
00226 ROOT::Fit::BinData d;
00227 ROOT::Fit::FillData(d,hist);
00228
00229
00230
00231
00232
00233 ROOT::Fit::Fitter fitter;
00234 fitter.Config().SetMinimizer(MinType::name().c_str(),MinType::name2().c_str());
00235
00236 if (debug)
00237 fitter.Config().MinimizerOptions().SetPrintLevel(3);
00238
00239
00240
00241 if (!useGrad) {
00242
00243
00244
00245
00246 fitter.SetFunction(func);
00247
00248 } else {
00249
00250 #ifdef USE_MATHMORE_FUNC
00251
00252 ROOT::Math::Polynomial pol(2);
00253 assert(pol.NPar() == func->GetNpar());
00254 pol.SetParameters(func->GetParameters() );
00255 ROOT::Math::WrappedParamFunction<ROOT::Math::Polynomial> f(pol,1,func->GetParameters(),func->GetParameters()+func->GetNpar() );
00256 #endif
00257 GaussFunction f;
00258 f.SetParameters(func.Parameters());
00259 fitter.SetFunction(f);
00260 }
00261
00262
00263 bool ret = fitter.Fit(d);
00264 if (!ret) {
00265 std::cout << " Fit Failed " << std::endl;
00266 return -1;
00267 }
00268 if (debug)
00269 fitter.Result().Print(std::cout);
00270 return 0;
00271 }
00272
00273
00274 template <class MinType, class T>
00275 int DoUnBinFit(T * tree, Func & func, bool debug = false, bool copyData = false ) {
00276
00277 ROOT::Fit::UnBinData * d = FillUnBinData(tree, copyData, func.NDim() );
00278
00279
00280
00281
00282 if (copyData)
00283 std::cout << "\tcopy data in FitData\n";
00284 else
00285 std::cout << "\tre-use original data \n";
00286
00287
00288
00289
00290
00291
00292
00293
00294 ROOT::Fit::Fitter fitter;
00295 fitter.Config().SetMinimizer(MinType::name().c_str(),MinType::name2().c_str());
00296
00297 if (debug)
00298 fitter.Config().MinimizerOptions().SetPrintLevel(3);
00299
00300
00301 fitter.Config().MinimizerOptions().SetTolerance(1);
00302
00303
00304
00305
00306 fitter.SetFunction(func);
00307
00308
00309
00310 bool ret = fitter.Fit(*d);
00311 if (!ret) {
00312 std::cout << " Fit Failed " << std::endl;
00313 return -1;
00314 }
00315 if (debug)
00316 fitter.Result().Print(std::cout);
00317
00318 delete d;
00319
00320 return 0;
00321
00322 }
00323
00324 template <class MinType>
00325 int DoFit(TTree * tree, Func & func, bool debug = false, bool copyData = false ) {
00326 return DoUnBinFit<MinType, TTree>(tree, func, debug, copyData);
00327 }
00328 template <class MinType>
00329 int DoFit(TH1 * h1, Func & func, bool debug = false, bool copyData = false ) {
00330 return DoBinFit<MinType, TH1>(h1, func, debug, copyData);
00331 }
00332 template <class MinType>
00333 int DoFit(TGraph * gr, Func & func, bool debug = false, bool copyData = false ) {
00334 return DoBinFit<MinType, TGraph>(gr, func, debug, copyData);
00335 }
00336
00337 template <class MinType, class FitObj>
00338 int FitUsingNewFitter(FitObj * fitobj, Func & func, bool useGrad=false) {
00339
00340 std::cout << "\n************************************************************\n";
00341 std::cout << "\tFit using new Fit::Fitter " << typeid(*fitobj).name() << std::endl;
00342 std::cout << "\tMinimizer is " << MinType::name() << " " << MinType::name2() << " func dim = " << func.NDim() << std::endl;
00343
00344 int iret = 0;
00345 TStopwatch w; w.Start();
00346
00347 #ifdef DEBUG
00348
00349 func.SetParameters(iniPar);
00350 iret |= DoFit<MinType>(fitobj,func,true, useGrad);
00351 if (iret != 0) {
00352 std::cout << "Fit failed " << std::endl;
00353 }
00354
00355 #else
00356 for (int i = 0; i < nfit; ++i) {
00357 func.SetParameters(iniPar);
00358 iret = DoFit<MinType>(fitobj,func, false, useGrad);
00359 if (iret != 0) {
00360 std::cout << "Fit failed " << std::endl;
00361 break;
00362 }
00363 }
00364 #endif
00365 w.Stop();
00366 std::cout << "\nTime: \t" << w.RealTime() << " , " << w.CpuTime() << std::endl;
00367 std::cout << "\n************************************************************\n";
00368
00369 return iret;
00370 }
00371
00372
00373
00374
00375
00376 template <class T, class MinType>
00377 int FitUsingTFit(T * hist, TF1 * func) {
00378
00379 std::cout << "\n************************************************************\n";
00380 std::cout << "\tFit using " << hist->ClassName() << "::Fit\n";
00381 std::cout << "\tMinimizer is " << MinType::name() << std::endl;
00382
00383 std::string opt = "BFQ0";
00384 if (MinType::name() == "Linear")
00385 opt = "Q0";
00386
00387
00388
00389
00390
00391
00392
00393
00394
00395 int iret = 0;
00396 TVirtualFitter::SetDefaultFitter(MinType::name().c_str());
00397
00398 TStopwatch w; w.Start();
00399 for (int i = 0; i < nfit; ++i) {
00400 func->SetParameters(iniPar);
00401 iret |= hist->Fit(func,opt.c_str());
00402 if (iret != 0) {
00403 std::cout << "Fit failed " << std::endl;
00404 return iret;
00405 }
00406 }
00407
00408 #ifdef DEBUG
00409 func->SetParameters(iniPar);
00410
00411
00412
00413
00414
00415
00416
00417 if (MinType::name() != "Linear")
00418 iret |= hist->Fit(func,"BFV0");
00419 else
00420 iret |= hist->Fit(func,"V0");
00421
00422 int pr = std::cout.precision(18);
00423 std::cout << "Chi2 value = " << func->GetChisquare() << std::endl;
00424 std::cout.precision(pr);
00425
00426 #endif
00427 w.Stop();
00428 std::cout << "\nTime: \t" << w.RealTime() << " , " << w.CpuTime() << std::endl;
00429 std::cout << "\n************************************************************\n";
00430
00431 return iret;
00432 }
00433
00434
00435
00436 template <class MinType>
00437 int FitUsingTTreeFit(TTree * tree, TF1 * func, const std::string & vars = "x") {
00438
00439 std::cout << "\n************************************************************\n";
00440 std::cout << "\tFit using TTree::UnbinnedFit\n";
00441 std::cout << "\tMinimizer is " << MinType::name() << std::endl;
00442
00443
00444 std::string sel = "";
00445
00446 int iret = 0;
00447 TVirtualFitter::SetDefaultFitter(MinType::name().c_str());
00448
00449 TStopwatch w; w.Start();
00450 for (int i = 0; i < nfit; ++i) {
00451 func->SetParameters(iniPar);
00452 iret |= tree->UnbinnedFit(func->GetName(),vars.c_str(),sel.c_str(),"Q");
00453 if (iret != 0) {
00454 std::cout << "Fit failed : iret = " << iret << std::endl;
00455 return iret;
00456 }
00457 }
00458
00459 #ifdef DEBUG
00460 func->SetParameters(iniPar);
00461
00462 iret |= tree->UnbinnedFit(func->GetName(),vars.c_str(),sel.c_str(),"V");
00463
00464 #endif
00465 w.Stop();
00466 std::cout << "\nTime: \t" << w.RealTime() << " , " << w.CpuTime() << std::endl;
00467 std::cout << "\n************************************************************\n";
00468
00469 return iret;
00470 }
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482
00483
00484 int FitUsingRooFit(TH1 * hist, TF1 * func) {
00485
00486 int iret = 0;
00487 std::cout << "\n************************************************************\n";
00488 std::cout << "\tFit using RooFit (Chi2 Fit)\n";
00489 std::cout << "\twith function " << func->GetName() << "\n";
00490
00491
00492
00493 TStopwatch w; w.Start();
00494
00495 for (int i = 0; i < nfit; ++i) {
00496
00497 RooRealVar x("x","x",-5,5) ;
00498
00499 RooDataHist data("bindata","bin dataset with x",x,hist) ;
00500
00501 RooAbsPdf * pdf = 0;
00502 RooRealVar * mean = 0;
00503 RooRealVar * sigma = 0;
00504
00505 func->SetParameters(iniPar);
00506 std::string fname = func->GetName();
00507 if (fname == "gaussian") {
00508 double val,pmin,pmax;
00509 val = func->GetParameter(1);
00510 RooRealVar * mean = new RooRealVar("mean","Mean of Gaussian",val) ;
00511 val = func->GetParameter(2); func->GetParLimits(1,pmin,pmax);
00512 RooRealVar * sigma = new RooRealVar("sigma","Width of Gaussian",val) ;
00513
00514 pdf = new RooGaussian("gauss","gauss(x,mean,sigma)",x,*mean,*sigma) ;
00515 }
00516
00517 assert(pdf != 0);
00518 #define USE_CHI2_FIT
00519 #ifdef USE_CHI2_FIT
00520 RooChi2Var chi2("chi2","chi2",*pdf,data) ;
00521 RooMinuit m(chi2) ;
00522 m.setPrintLevel(-1);
00523 m.fit("mh") ;
00524 #else
00525 pdf->fitTo(data);
00526 #endif
00527
00528 delete pdf;
00529 delete mean; delete sigma;
00530 }
00531
00532 w.Stop();
00533 std::cout << "\nTime: \t" << w.RealTime() << " , " << w.CpuTime() << std::endl;
00534 std::cout << "\n************************************************************\n";
00535 return iret;
00536 }
00537
00538
00539 int FitUsingRooFit(TTree * tree, TF1 * func) {
00540
00541 int iret = 0;
00542 std::cout << "\n************************************************************\n";
00543 std::cout << "\tFit using RooFit (Likelihood Fit)\n";
00544 std::cout << "\twith function " << func->GetName() << "\n";
00545
00546
00547
00548 TStopwatch w; w.Start();
00549
00550 for (int i = 0; i < nfit; ++i) {
00551
00552 RooRealVar x("x","x",-100,100) ;
00553 RooRealVar y("y","y",-100,100);
00554
00555 RooDataSet data("unbindata","unbin dataset with x",tree,RooArgSet(x,y)) ;
00556
00557
00558 RooRealVar mean("mean","Mean of Gaussian",iniPar[0], -100,100) ;
00559 RooRealVar sigma("sigma","Width of Gaussian",iniPar[1], -100, 100) ;
00560
00561 RooGaussian pdfx("gaussx","gauss(x,mean,sigma)",x,mean,sigma);
00562
00563
00564 RooRealVar meany("meanx","Mean of Gaussian",iniPar[2], -100,100) ;
00565 RooRealVar sigmay("sigmay","Width of Gaussian",iniPar[3], -100, 100) ;
00566 RooGaussian pdfy("gaussy","gauss(y,meanx,sigmay)",y,meany,sigmay);
00567
00568 RooProdPdf pdf("gausxy","gausxy",RooArgSet(pdfx,pdfy) );
00569
00570
00571 #ifdef DEBUG
00572 int level = 3;
00573 std::cout << "num entries = " << data.numEntries() << std::endl;
00574 bool save = true;
00575 (pdf.getVariables())->Print("v");
00576 #else
00577 int level = -1;
00578 bool save = false;
00579 #endif
00580
00581
00582 RooFitResult * result = pdf.fitTo(data, RooFit::Minos(0), RooFit::Hesse(1) , RooFit::PrintLevel(level), RooFit::Save(save) );
00583
00584
00585
00586
00587 #ifdef DEBUG
00588 mean.Print();
00589 sigma.Print();
00590 assert(result != 0);
00591 std::cout << " Roofit status " << result->status() << std::endl;
00592 result->Print();
00593 #endif
00594 if (save) iret |= (result == 0);
00595
00596 if (iret != 0) {
00597 std::cout << "Fit failed " << std::endl;
00598 return iret;
00599 }
00600
00601 }
00602
00603 w.Stop();
00604 std::cout << "\nTime: \t" << w.RealTime() << " , " << w.CpuTime() << std::endl;
00605 std::cout << "\n************************************************************\n";
00606 return iret;
00607 }
00608
00609
00610 int FitUsingRooFit2(TTree * tree) {
00611
00612 int iret = 0;
00613 std::cout << "\n************************************************************\n";
00614 std::cout << "\tFit using RooFit (Likelihood Fit)\n";
00615
00616
00617
00618 TStopwatch w; w.Start();
00619
00620 for (int i = 0; i < nfit; ++i) {
00621
00622 RooArgSet xvars;
00623 std::vector<RooRealVar *> x(N);
00624 std::vector<RooRealVar *> m(N);
00625 std::vector<RooRealVar *> s(N);
00626
00627 std::vector<RooGaussian *> g(N);
00628 std::vector<RooProdPdf *> pdf(N);
00629
00630 for (int j = 0; j < N; ++j) {
00631 std::string xname = "x_" + ROOT::Math::Util::ToString(j);
00632 x[j] = new RooRealVar(xname.c_str(),xname.c_str(),-10000,10000) ;
00633 xvars.add( *x[j] );
00634 }
00635
00636
00637 RooDataSet data("unbindata","unbin dataset with x",tree,xvars) ;
00638
00639
00640 for (int j = 0; j < N; ++j) {
00641 std::string mname = "m_" + ROOT::Math::Util::ToString(j);
00642 std::string sname = "s_" + ROOT::Math::Util::ToString(j);
00643
00644
00645 m[j] = new RooRealVar(mname.c_str(),mname.c_str(),iniPar[2*j],-100,100) ;
00646 s[j] = new RooRealVar(sname.c_str(),sname.c_str(),iniPar[2*j+1],-100,100) ;
00647
00648 std::string gname = "g_" + ROOT::Math::Util::ToString(j);
00649 g[j] = new RooGaussian(gname.c_str(),"gauss(x,mean,sigma)",*x[j],*m[j],*s[j]);
00650
00651 std::string pname = "prod_" + ROOT::Math::Util::ToString(j);
00652 if (j == 1) {
00653 pdf[1] = new RooProdPdf(pname.c_str(),pname.c_str(),RooArgSet(*g[1],*g[0]) );
00654 }
00655 else if (j > 1) {
00656 pdf[j] = new RooProdPdf(pname.c_str(),pname.c_str(),RooArgSet(*g[j],*pdf[j-1]) );
00657 }
00658 }
00659
00660
00661
00662
00663 #ifdef DEBUG
00664 int level = 3;
00665 std::cout << "num entries = " << data.numEntries() << std::endl;
00666 bool save = true;
00667 (pdf[N-1]->getVariables())->Print("v");
00668 std::cout << "\n\nDo the fit now \n\n";
00669 #else
00670 int level = -1;
00671 bool save = false;
00672 #endif
00673
00674
00675 #ifndef _WIN32 // until a bug 30762 is fixed
00676 RooFitResult * result = pdf[N-1]->fitTo(data, RooFit::Minos(0), RooFit::Hesse(1) , RooFit::PrintLevel(level), RooFit::Save(save) );
00677 #else
00678 RooFitResult * result = pdf[N-1]->fitTo(data);
00679 #endif
00680
00681 #ifdef DEBUG
00682 assert(result != 0);
00683 std::cout << " Roofit status " << result->status() << std::endl;
00684 result->Print();
00685 #endif
00686
00687
00688 iret |= (result == 0);
00689
00690
00691 for (int j = 0; j < N; ++j) {
00692 delete x[j];
00693 delete m[j];
00694 delete s[j];
00695 delete g[j];
00696 delete pdf[j];
00697 }
00698
00699 if (iret != 0) return iret;
00700
00701
00702
00703 }
00704
00705 w.Stop();
00706 std::cout << "\nTime: \t" << w.RealTime() << " , " << w.CpuTime() << std::endl;
00707 std::cout << "\n************************************************************\n";
00708 return iret;
00709 }
00710
00711
00712 double poly2(const double *x, const double *p) {
00713 return p[0] + (p[1]+p[2]*x[0] ) * x[0];
00714 }
00715
00716 int testPolyFit() {
00717
00718 int iret = 0;
00719
00720
00721 std::cout << "\n\n************************************************************\n";
00722 std::cout << "\t POLYNOMIAL FIT\n";
00723 std::cout << "************************************************************\n";
00724
00725 std::string fname("pol2");
00726
00727 TF1 * f1 = new TF1("pol2",fname.c_str(),-5,5.);
00728
00729 f1->SetParameter(0,1);
00730 f1->SetParameter(1,0.0);
00731 f1->SetParameter(2,1.0);
00732
00733
00734
00735 TH1D * h1 = new TH1D("h1","h1",20,-5.,5.);
00736
00737 for (int i = 0; i <1000; ++i)
00738 h1->Fill( f1->GetRandom() );
00739
00740
00741
00742 iniPar[0] = 2.; iniPar[1] = 2.; iniPar[2] = 2.;
00743
00744
00745 iret |= FitUsingTFit<TH1,TMINUIT>(h1,f1);
00746 iret |= FitUsingTFit<TH1,MINUIT2>(h1,f1);
00747
00748
00749
00750
00751
00752 ROOT::Math::WrappedParamFunction<> f2(&poly2,1,iniPar,iniPar+3);
00753
00754
00755
00756 iret |= FitUsingNewFitter<MINUIT2>(h1,f2);
00757 iret |= FitUsingNewFitter<TMINUIT>(h1,f2);
00758
00759
00760
00761 ROOT::Math::WrappedTF1 wf(*f1);
00762 ROOT::Math::MultiDimParamGradFunctionAdapter lfunc(wf);
00763 iret |= FitUsingNewFitter<LINEAR>(h1,lfunc,true);
00764 iret |= FitUsingTFit<TH1,LINEAR>(h1,f1);
00765
00766
00767
00768 gStyle->SetErrorX(0.);
00769 TGraphErrors * gr = new TGraphErrors(h1);
00770 iret |= FitUsingTFit<TGraph,TMINUIT>(gr,f1);
00771
00772 iret |= FitUsingTFit<TGraph,MINUIT2>(gr,f1);
00773
00774 iret |= FitUsingNewFitter<MINUIT2>(gr,f2);
00775
00776
00777 std::cout << "\n-----> test now TGraphErrors with errors in X coordinates\n\n";
00778
00779 gStyle->SetErrorX(0.5);
00780 TGraphErrors * gr2 = new TGraphErrors(h1);
00781 iret |= FitUsingTFit<TGraph,TMINUIT>(gr2,f1);
00782 iret |= FitUsingTFit<TGraph,MINUIT2>(gr2,f1);
00783
00784 iret |= FitUsingNewFitter<MINUIT2>(gr2,f2);
00785
00786 printResult(iret);
00787
00788 return iret;
00789 }
00790
00791 double gaussian(const double *x, const double *p) {
00792
00793 double tmp = (x[0]-p[1])/p[2];
00794 return p[0] * std::exp(-tmp*tmp/2);
00795 }
00796
00797 double gausnorm(const double *x, const double *p) {
00798
00799 double invsig = 1./p[1];
00800 double tmp = (x[0]-p[0]) * invsig;
00801 const double sqrt_2pi = 1./std::sqrt(2.* 3.14159 );
00802 return std::exp(-0.5 * tmp*tmp ) * sqrt_2pi * invsig;
00803 }
00804 double gausnorm2D(const double *x, const double *p) {
00805
00806 return gausnorm(x,p)*gausnorm(x+1,p+2);
00807 }
00808 double gausnormN(const double *x, const double *p) {
00809
00810 double f = 1;
00811 for (int i = 0; i < N; ++i)
00812 f *= gausnorm(x+i,p+2*i);
00813
00814 return f;
00815 }
00816
00817 int testGausFit() {
00818
00819 int iret = 0;
00820
00821 std::cout << "\n\n************************************************************\n";
00822 std::cout << "\t GAUSSIAN FIT\n";
00823 std::cout << "************************************************************\n";
00824
00825
00826
00827
00828
00829
00830 TF1 * f1 = new TF1("gaussian",gaussian,-5,5.,3);
00831
00832
00833
00834 int nbin = 10000;
00835 TH1D * h2 = new TH1D("h2","h2",nbin,-5.,5.);
00836
00837 for (int i = 0; i < 10000000; ++i)
00838 h2->Fill( gRandom->Gaus(0,10) );
00839
00840 iniPar[0] = 100.; iniPar[1] = 2.; iniPar[2] = 2.;
00841
00842
00843
00844
00845 ROOT::Math::WrappedParamFunction<> f2(&gaussian,1,iniPar,iniPar+3);
00846
00847
00848 iret |= FitUsingNewFitter<MINUIT2>(h2,f2);
00849 iret |= FitUsingNewFitter<TMINUIT>(h2,f2);
00850
00851
00852
00853
00854 iret |= FitUsingTFit<TH1,TMINUIT>(h2,f1);
00855 iret |= FitUsingTFit<TH1,MINUIT2>(h2,f1);
00856
00857
00858 iret |= FitUsingNewFitter<GSL_FR>(h2,f2);
00859 iret |= FitUsingNewFitter<GSL_PR>(h2,f2);
00860 iret |= FitUsingNewFitter<GSL_BFGS>(h2,f2);
00861 iret |= FitUsingNewFitter<GSL_BFGS2>(h2,f2);
00862
00863
00864
00865 gStyle->SetErrorX(0.);
00866 TGraphErrors * gr = new TGraphErrors(h2);
00867
00868 iret |= FitUsingTFit<TGraph,TMINUIT>(gr,f1);
00869 iret |= FitUsingTFit<TGraph,MINUIT2>(gr,f1);
00870
00871 iret |= FitUsingNewFitter<MINUIT2>(gr,f2);
00872
00873
00874 gStyle->SetErrorX(0.5);
00875 TGraphErrors * gr2 = new TGraphErrors(h2);
00876 iret |= FitUsingTFit<TGraph,TMINUIT>(gr2,f1);
00877
00878 iret |= FitUsingNewFitter<MINUIT2>(gr2,f2);
00879
00880
00881
00882
00883
00884 std::cout << "\n\nTest Using pre-calculated gradients\n\n";
00885 bool useGrad=true;
00886 iret |= FitUsingNewFitter<MINUIT2>(h2,f2,useGrad);
00887 iret |= FitUsingNewFitter<TMINUIT>(h2,f2,useGrad);
00888 iret |= FitUsingNewFitter<GSL_FR>(h2,f2,useGrad);
00889 iret |= FitUsingNewFitter<GSL_PR>(h2,f2,useGrad);
00890 iret |= FitUsingNewFitter<GSL_BFGS>(h2,f2,useGrad);
00891 iret |= FitUsingNewFitter<GSL_BFGS2>(h2,f2,useGrad);
00892
00893
00894
00895 std::cout << "\n\nTest Least Square algorithms\n\n";
00896 iret |= FitUsingNewFitter<GSL_NLS>(h2,f2);
00897 iret |= FitUsingNewFitter<FUMILI2>(h2,f2);
00898 iret |= FitUsingNewFitter<TFUMILI>(h2,f2);
00899
00900
00901
00902
00903
00904
00905
00906 printResult(iret);
00907
00908 return iret;
00909 }
00910
00911 int testTreeFit() {
00912
00913 std::cout << "\n\n************************************************************\n";
00914 std::cout << "\t UNBINNED TREE (GAUSSIAN) FIT\n";
00915 std::cout << "************************************************************\n";
00916
00917
00918 TTree t1("t1","a simple Tree with simple variables");
00919 double x, y;
00920 Int_t ev;
00921 t1.Branch("x",&x,"x/D");
00922 t1.Branch("y",&y,"y/D");
00923
00924
00925 t1.Branch("ev",&ev,"ev/I");
00926
00927
00928 int nrows = 10000;
00929 #ifdef TREE_FIT2D
00930 nrows = 10000;
00931 #endif
00932 for (Int_t i=0;i<nrows;i++) {
00933 gRandom->Rannor(x,y);
00934 x *= 2; x += 1.;
00935 y *= 3; y -= 2;
00936
00937 ev = i;
00938 t1.Fill();
00939
00940 }
00941
00942
00943 TF1 * f1 = new TF1("gausnorm", gausnorm, -10,10, 2);
00944 TF2 * f2 = new TF2("gausnorm2D", gausnorm2D, -10,10, -10,10, 4);
00945
00946 ROOT::Math::WrappedParamFunction<> wf1(&gausnorm,1,iniPar,iniPar+2);
00947 ROOT::Math::WrappedParamFunction<> wf2(&gausnorm2D,2,iniPar,iniPar+4);
00948
00949
00950 iniPar[0] = 0;
00951 iniPar[1] = 1;
00952 iniPar[2] = 0;
00953 iniPar[3] = 1;
00954
00955
00956
00957
00958 int iret = 0;
00959
00960
00961
00962
00963 iret |= FitUsingTTreeFit<MINUIT2>(&t1,f1,"x");
00964 iret |= FitUsingTTreeFit<MINUIT2>(&t1,f1,"x");
00965
00966 iret |= FitUsingTTreeFit<TMINUIT>(&t1,f1,"x");
00967
00968 iret |= FitUsingNewFitter<MINUIT2>(&t1,wf1,false);
00969 iret |= FitUsingNewFitter<TMINUIT>(&t1,wf1,false);
00970 iret |= FitUsingNewFitter<MINUIT2>(&t1,wf1,true);
00971 iret |= FitUsingNewFitter<TMINUIT>(&t1,wf1,true);
00972
00973
00974
00975
00976
00977 iret |= FitUsingTTreeFit<MINUIT2>(&t1,f2,"x:y");
00978 iret |= FitUsingTTreeFit<TMINUIT>(&t1,f2,"x:y");
00979
00980 iret |= FitUsingNewFitter<MINUIT2>(&t1,wf2, true);
00981 iret |= FitUsingNewFitter<MINUIT2>(&t1,wf2, false);
00982
00983
00984
00985 iret |= FitUsingRooFit(&t1,f1);
00986
00987 printResult(iret);
00988 return iret;
00989
00990 }
00991
00992 int testLargeTreeFit(int nevt = 1000) {
00993
00994 std::cout << "\n\n************************************************************\n";
00995 std::cout << "\t UNBINNED TREE (GAUSSIAN MULTI-DIM) FIT\n";
00996 std::cout << "************************************************************\n";
00997
00998 TTree t1("t2","a large Tree with simple variables");
00999 double x[N];
01000 Int_t ev;
01001 t1.Branch("x",x,"x[20]/D");
01002 t1.Branch("ev",&ev,"ev/I");
01003
01004
01005 TRandom3 r;
01006 for (Int_t i=0;i<nevt;i++) {
01007 for (int j = 0; j < N; ++j) {
01008 double mu = double(j)/10.;
01009 double s = 1.0 + double(j)/10.;
01010 x[j] = r.Gaus(mu,s);
01011 }
01012
01013 ev = i;
01014 t1.Fill();
01015
01016 }
01017
01018
01019
01020 for (int i = 0; i <N; ++i) {
01021 iniPar[2*i] = 0;
01022 iniPar[2*i+1] = 1;
01023 }
01024
01025
01026
01027 ROOT::Math::WrappedParamFunction<> f2(&gausnormN,N,2*N,iniPar);
01028
01029 int iret = 0;
01030 iret |= FitUsingNewFitter<MINUIT2>(&t1,f2);
01031 iret |= FitUsingNewFitter<TMINUIT>(&t1,f2);
01032 iret |= FitUsingNewFitter<GSL_BFGS2>(&t1,f2);
01033
01034
01035
01036 printResult(iret);
01037 return iret;
01038
01039 }
01040 int testLargeTreeRooFit(int nevt = 1000) {
01041
01042 int iret = 0;
01043
01044 TTree t2("t2b","a large Tree with simple variables");
01045 double x[N];
01046 Int_t ev;
01047 for (int j = 0; j < N; ++j) {
01048 std::string xname = "x_" + ROOT::Math::Util::ToString(j);
01049 std::string xname2 = "x_" + ROOT::Math::Util::ToString(j) + "/D";
01050 t2.Branch(xname.c_str(),&x[j],xname2.c_str());
01051 }
01052 t2.Branch("ev",&ev,"ev/I");
01053
01054 TRandom3 r;
01055 for (Int_t i=0;i<nevt;i++) {
01056 for (int j = 0; j < N; ++j) {
01057 double mu = double(j)/10.;
01058 double s = 1.0 + double(j)/10.;
01059 x[j] = r.Gaus(mu,s);
01060 }
01061
01062 ev = i;
01063 t2.Fill();
01064 }
01065
01066
01067 for (int i = 0; i <N; ++i) {
01068 iniPar[2*i] = 0;
01069 iniPar[2*i+1] = 1;
01070 }
01071
01072
01073
01074
01075 iret |= FitUsingRooFit2(&t2);
01076
01077
01078 printResult(iret);
01079
01080 return iret;
01081
01082 }
01083
01084 int testFitPerf() {
01085
01086 int iret = 0;
01087
01088
01089
01090 #ifndef DEBUG
01091 nfit = 10;
01092 #endif
01093 iret |= testGausFit();
01094
01095
01096 #ifdef DEBUG
01097 nfit = 1;
01098 #else
01099 nfit = 1;
01100 #endif
01101 iret |= testTreeFit();
01102
01103
01104
01105
01106
01107 #ifndef DEBUG
01108 nfit = 1000;
01109 #endif
01110 iret |= testPolyFit();
01111
01112
01113
01114
01115 nfit = 1;
01116 iret |= testLargeTreeRooFit(500);
01117 iret |= testLargeTreeFit(500);
01118
01119
01120 if (iret != 0)
01121 std::cerr << "testFitPerf :\t FAILED " << std::endl;
01122 else
01123 std::cerr << "testFitPerf :\t OK " << std::endl;
01124 return iret;
01125 }
01126
01127 int main() {
01128 return testFitPerf();
01129 }
01130