Matrix Template Functions
[SMatrix]


Functions

template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< AddOp< T >,
SMatrix< T, D, D2, R1 >,
SMatrix< T, D, D2, R2 >,
T >, T, D, D2, typename AddPolicy<
T, D, D2, R1, R2 >::RepType > 
ROOT::Math::operator+ (const SMatrix< T, D, D2, R1 > &lhs, const SMatrix< T, D, D2, R2 > &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< AddOp<
T >, SMatrix< T, D, D2, R >,
Constant< A >, T >, T, D,
D2, R
ROOT::Math::operator+ (const SMatrix< T, D, D2, R > &lhs, const A &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< AddOp<
T >, Constant< A >, SMatrix<
T, D, D2, R >, T >, T, D,
D2, R
ROOT::Math::operator+ (const A &lhs, const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< MinOp< T >,
SMatrix< T, D, D2, R1 >,
SMatrix< T, D, D2, R2 >,
T >, T, D, D2, typename AddPolicy<
T, D, D2, R1, R2 >::RepType > 
ROOT::Math::operator- (const SMatrix< T, D, D2, R1 > &lhs, const SMatrix< T, D, D2, R2 > &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< MinOp<
T >, SMatrix< T, D, D2, R >,
Constant< A >, T >, T, D,
D2, R
ROOT::Math::operator- (const SMatrix< T, D, D2, R > &lhs, const A &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< MinOp<
T >, Constant< A >, SMatrix<
T, D, D2, R >, T >, T, D,
D2, R
ROOT::Math::operator- (const A &lhs, const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< MulOp< T >,
SMatrix< T, D, D2, R1 >,
SMatrix< T, D, D2, R2 >,
T >, T, D, D2, typename AddPolicy<
T, D, D2, R1, R2 >::RepType > 
ROOT::Math::Times (const SMatrix< T, D, D2, R1 > &lhs, const SMatrix< T, D, D2, R2 > &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< MulOp<
T >, SMatrix< T, D, D2, R >,
Constant< A >, T >, T, D,
D2, R
ROOT::Math::operator * (const SMatrix< T, D, D2, R > &lhs, const A &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< MulOp<
T >, Constant< A >, SMatrix<
T, D, D2, R >, T >, T, D,
D2, R
ROOT::Math::operator * (const A &lhs, const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< DivOp< T >,
SMatrix< T, D, D2, R1 >,
SMatrix< T, D, D2, R2 >,
T >, T, D, D2, typename AddPolicy<
T, D, D2, R1, R2 >::RepType > 
ROOT::Math::Div (const SMatrix< T, D, D2, R1 > &lhs, const SMatrix< T, D, D2, R2 > &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< DivOp<
T >, SMatrix< T, D, D2, R >,
Constant< A >, T >, T, D,
D2, R
ROOT::Math::operator/ (const SMatrix< T, D, D2, R > &lhs, const A &rhs)
template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< DivOp<
T >, Constant< A >, SMatrix<
T, D, D2, R >, T >, T, D,
D2, R
ROOT::Math::operator/ (const A &lhs, const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D1, unsigned int D2, class R>
VecExpr< VectorMatrixRowOp<
SMatrix< T, D1, D2, R >,
SVector< T, D2 >, D2 >, T,
D1 > 
ROOT::Math::operator * (const SMatrix< T, D1, D2, R > &lhs, const SVector< T, D2 > &rhs)
template<class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
Expr< MatrixMulOp< SMatrix<
T, D1, D, R1 >, SMatrix<
T, D, D2, R2 >, T, D >, T,
D1, D2, typename MultPolicy<
T, R1, R2 >::RepType > 
ROOT::Math::operator * (const SMatrix< T, D1, D, R1 > &lhs, const SMatrix< T, D, D2, R2 > &rhs)
template<class T, unsigned int D1, unsigned int D2, class R>
Expr< TransposeOp< SMatrix<
T, D1, D2, R >, T, D1, D2 >,
T, D2, D1, typename TranspPolicy<
T, D1, D2, R >::RepType > 
ROOT::Math::Transpose (const SMatrix< T, D1, D2, R > &rhs)
template<class T, unsigned int D, class R>
T ROOT::Math::Similarity (const SMatrix< T, D, D, R > &lhs, const SVector< T, D > &rhs)
template<class T, unsigned int D1, unsigned int D2, class R>
SMatrix< T, D1, D1, MatRepSym<
T, D1 > > 
ROOT::Math::Similarity (const SMatrix< T, D1, D2, R > &lhs, const SMatrix< T, D2, D2, MatRepSym< T, D2 > > &rhs)
template<class T, unsigned int D1, unsigned int D2, class R>
SMatrix< T, D2, D2, MatRepSym<
T, D2 > > 
ROOT::Math::SimilarityT (const SMatrix< T, D1, D2, R > &lhs, const SMatrix< T, D1, D1, MatRepSym< T, D1 > > &rhs)
template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Minus< T >,
SMatrix< T, D, D2, R >, T >,
T, D, D2, R
ROOT::Math::operator- (const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Fabs< T >,
SMatrix< T, D, D2, R >, T >,
T, D, D2, R
ROOT::Math::fabs (const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Sqr< T >, SMatrix<
T, D, D2, R >, T >, T, D,
D2, R
ROOT::Math::sqr (const SMatrix< T, D, D2, R > &rhs)
template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Sqrt< T >,
SMatrix< T, D, D2, R >, T >,
T, D, D2, R
ROOT::Math::sqrt (const SMatrix< T, D, D2, R > &rhs)

Detailed Description

These function apply to matrices (and also Matrix expression) and can return a matrix expression of a particular defined type, like in the matrix multiplication or a vector, like in the matrix-vector product or a scalar like in the Similarity vector-matrix product.

Function Documentation

template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< DivOp< T >, SMatrix< T, D, D2, R1 >, SMatrix< T, D, D2, R2 >, T >, T, D, D2, typename AddPolicy< T, D, D2, R1, R2 >::RepType > ROOT::Math::Div ( const SMatrix< T, D, D2, R1 > &  lhs,
const SMatrix< T, D, D2, R2 > &  rhs 
) [inline]

Division (element wise) of two matrices of the same dimensions: C(i,j) = A(i,j) / B(i,j) returning a matrix expression

Definition at line 896 of file BinaryOperators.h.

References T.

template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Fabs< T >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::fabs ( const SMatrix< T, D, D2, R > &  rhs  )  [inline]

abs of a matrix m2(i,j) = | m1(i,j) | returning a matrix epression

Definition at line 176 of file UnaryOperators.h.

References T.

Referenced by RooHist::addBin(), RooNumRunningInt::RICacheElem::addRange(), RooCurve::addRange(), RooStats::SPlot::AddSWeight(), RooDataHist::adjustBinning(), RooCBShape::analyticalIntegral(), RooNDKeysPdf::analyticalIntegral(), RooMultiVarGaussian::analyticalIntegral(), RooFitTestUnit::areTHidentical(), TMath::BesselJ0(), TMath::BesselJ1(), RooGExpModel::calcDecayConv(), ROOT::Math::GaussLegendreIntegrator::CalcGaussLegendreSamplingPoints(), RooGExpModel::calcSinConvNorm(), RooIntegralMorph::MorphCacheElem::calculate(), TFumiliUnbinLikelihoodFCN::Calculate_element(), TFumiliBinLikelihoodFCN::Calculate_element(), TFumiliFCN::Calculate_numerical_gradient(), TFumiliFCN::Calculate_numerical_gradient_of_integral(), VectorTest< Dim >::check(), ClassImp(), compareStatistics(), RooMath::ComplexErrFunc(), ROOT::Minuit2::MnContours::Contour(), ROOT::Math::gv_detail::convert(), correctTicks(), ROOT::Fit::FitConfig::CreateParamsSettings(), VectorTest< Dim >::cutPtEta(), VectorTest< Dim >::cutPtEtaAndMass(), ROOT::Math::CylindricalEta3D< T >::CylindricalEta3D(), ROOT::Minuit2::HessianGradientCalculator::DeltaGradient(), ROOT::Math::Quaternion::Distance(), DoNewMinimization(), ROOT::Math::VavilovAccurate::E1plLog(), equals(), ErrorIntegral(), ROOT::Math::Impl::Eta_FromRhoZ(), RooTruthModel::evaluate(), RooCBShape::evaluate(), ROOT::Minuit2::FumiliStandardMaximumLikelihoodFCN::EvaluateAll(), RooIntegrator1D::extrapolate(), RooIntegralMorph::MorphCacheElem::fillGap(), findBin(), RooCurve::findPoint(), RooIntegralMorph::MorphCacheElem::findRange(), RooBrentRootFinder::findRoot(), RooAbsPdf::fitTo(), RooRealVar::format(), ROOT::Math::gaussian_pdf(), GaussPdf(), RooBCPEffDecay::generateEvent(), RooBCPGenDecay::generateEvent(), RooBDecay::generateEvent(), ROOT::Minuit2::GaussianModelFunction::GetGradient(), gl2psSameColorThreshold(), gsl_integration_qk(), gsl_integration_qng(), gsl_poly_complex_solve_cubic(), gsl_poly_complex_solve_quartic(), RooHist::hasIdenticalBinning(), ROOT::Math::Cephes::igami(), ROOT::Math::Cephes::incbi(), ROOT::Minuit2::MnUserTransformation::Int2extError(), RooIntegrator1D::integral(), RooMath::interpolate(), RooCurve::interpolate(), RooFitResult::isIdentical(), RooCurve::isIdentical(), RooDataSet::isNonPoissonWeighted(), RooDataHist::isNonPoissonWeighted(), RooRealIntegral::jacobianProduct(), RooGExpModel::logErfC(), ROOT::Math::lognormal_pdf(), main(), TestBasic303::makeFakeDataXY(), makeFakeDataXY(), RooExpensiveObjectCache::ExpensiveObject::matches(), mathcoreVectorCollection(), ROOT::Math::BrentMethods::MinimBrent(), ROOT::Math::BrentMethods::MinimStep(), ROOT::Minuit2::VariableMetricBuilder::Minimum(), ROOT::Minuit2::SimplexBuilder::Minimum(), ROOT::Minuit2::FumiliBuilder::Minimum(), ROOT::Minuit2::mndasum(), ROOT::Minuit2::mneigen(), RooBinning::nearestBoundary(), ROOT::Math::normal_pdf(), ROOT::Minuit2::MnFunctionCross::operator()(), ROOT::Minuit2::MnPosDef::operator()(), ROOT::Minuit2::GaussianModelFunction::operator()(), ROOT::Minuit2::MnSeedGenerator::operator()(), ROOT::Minuit2::NegativeG2LineSearch::operator()(), ROOT::Minuit2::MnHesse::operator()(), ROOT::Minuit2::MnLineSearch::operator()(), ROOT::Minuit2::InitialGradientCalculator::operator()(), ROOT::Minuit2::Numerical2PGradientCalculator::operator()(), ROOT::Minuit2::SimplexSeedGenerator::operator()(), ROOT::Fit::AreaComparer::operator()(), ROOT::Minuit2::operator<<(), operator==(), TMVA::CCPruner::Optimize(), TGLBoundingBox::Overlap(), png_init_read_transformations(), png_set_gamma(), printStats(), qag(), qags(), qelg(), ROOT::Math::RotationY::Rectify(), ROOT::Math::RotationZ::Rectify(), ROOT::Math::RotationX::Rectify(), rescale_error(), rf609_xychi2fit(), RooHist::RooHist(), RooHist::roundBin(), RooFitTestUnit::runCompTests(), TKDTreeBinning::SetCommonBinEdges(), ROOT::Minuit2::MnUserParameterState::SetLowerLimit(), ROOT::Fit::FitConfig::SetParamsSettings(), ROOT::Minuit2::MnUserParameterState::SetUpperLimit(), subinterval_too_small(), test18(), test19(), test7(), test8(), test_positivity(), TestBasic609::testCode(), testDerivation(), testH1Integral(), testH2Integral(), testH3Integral(), testIntegration(), testIntegration1D(), testIntegrationMultiDim(), testInterpolation1D(), testInterpolation2D(), testInterpolation3D(), testInterpolationVar1D(), testRead(), testReadSym(), testResult(), testSiCi(), testSpecFuncBeta(), testSpecFuncBetaI(), testSpecFuncErf(), testSpecFuncGamma(), testTrack(), testWrite(), testWriteSym(), ROOT::Math::Transform3D::Transform3D(), ROOT::Minuit2::FumiliErrorUpdator::Update(), Update(), RooPlot::updateFitRangeNorm(), TMath::Voigt(), and x3d_main().

template<class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
Expr< MatrixMulOp< SMatrix< T, D1, D, R1 >, SMatrix< T, D, D2, R2 >, T, D >, T, D1, D2, typename MultPolicy< T, R1, R2 >::RepType > ROOT::Math::operator * ( const SMatrix< T, D1, D, R1 > &  lhs,
const SMatrix< T, D, D2, R2 > &  rhs 
) [inline]

Matrix * Matrix multiplication , $ C(i,j) = \sum_{k} A(i,k) * B(k,j)$ returning a matrix expression

Definition at line 365 of file MatrixFunctions.h.

References D, and T.

template<class T, unsigned int D1, unsigned int D2, class R>
VecExpr< VectorMatrixRowOp< SMatrix< T, D1, D2, R >, SVector< T, D2 >, D2 >, T, D1 > ROOT::Math::operator * ( const SMatrix< T, D1, D2, R > &  lhs,
const SVector< T, D2 > &  rhs 
) [inline]

Matrix * Vector multiplication $ a(i) = \sum_{j} M(i,j) * b(j) $ returning a vector expression

Definition at line 190 of file MatrixFunctions.h.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< MulOp< T >, Constant< A >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::operator * ( const A lhs,
const SMatrix< T, D, D2, R > &  rhs 
) [inline]

Multiplication (element wise) of a matrix and a scalar, B(i,j) = s * A(i,j) returning a matrix expression

Definition at line 725 of file BinaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< MulOp< T >, SMatrix< T, D, D2, R >, Constant< A >, T >, T, D, D2, R > ROOT::Math::operator * ( const SMatrix< T, D, D2, R > &  lhs,
const A rhs 
) [inline]

Multiplication (element wise) of a matrix and a scalar, B(i,j) = A(i,j) * s returning a matrix expression

Definition at line 707 of file BinaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< AddOp< T >, Constant< A >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::operator+ ( const A lhs,
const SMatrix< T, D, D2, R > &  rhs 
) [inline]

Addition element by element of matrix and a scalar C(i,j) = s + A(i,j) returning a matrix expression

Definition at line 246 of file BinaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< AddOp< T >, SMatrix< T, D, D2, R >, Constant< A >, T >, T, D, D2, R > ROOT::Math::operator+ ( const SMatrix< T, D, D2, R > &  lhs,
const A rhs 
) [inline]

Addition element by element of matrix and a scalar C(i,j) = A(i,j) + s returning a matrix expression

Definition at line 229 of file BinaryOperators.h.

References T.

template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< AddOp< T >, SMatrix< T, D, D2, R1 >, SMatrix< T, D, D2, R2 >, T >, T, D, D2, typename AddPolicy< T, D, D2, R1, R2 >::RepType > ROOT::Math::operator+ ( const SMatrix< T, D, D2, R1 > &  lhs,
const SMatrix< T, D, D2, R2 > &  rhs 
) [inline]

Addition of two matrices C = A+B returning a matrix expression

Definition at line 175 of file BinaryOperators.h.

References T.

template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Minus< T >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::operator- ( const SMatrix< T, D, D2, R > &  rhs  )  [inline]

Unary - operator B = - A returning a matrix expression

Definition at line 101 of file UnaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< MinOp< T >, Constant< A >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::operator- ( const A lhs,
const SMatrix< T, D, D2, R > &  rhs 
) [inline]

Subtraction of a scalar and a matrix (element wise) B(i,j) = s - A(i,j) returning a matrix expression

Definition at line 491 of file BinaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< MinOp< T >, SMatrix< T, D, D2, R >, Constant< A >, T >, T, D, D2, R > ROOT::Math::operator- ( const SMatrix< T, D, D2, R > &  lhs,
const A rhs 
) [inline]

Subtraction of a scalar and a matrix (element wise) B(i,j) = A(i,j) - s returning a matrix expression

Definition at line 473 of file BinaryOperators.h.

References T.

template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< MinOp< T >, SMatrix< T, D, D2, R1 >, SMatrix< T, D, D2, R2 >, T >, T, D, D2, typename AddPolicy< T, D, D2, R1, R2 >::RepType > ROOT::Math::operator- ( const SMatrix< T, D, D2, R1 > &  lhs,
const SMatrix< T, D, D2, R2 > &  rhs 
) [inline]

Subtraction of two matrices C = A-B returning a matrix expression

Definition at line 419 of file BinaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyL< DivOp< T >, Constant< A >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::operator/ ( const A lhs,
const SMatrix< T, D, D2, R > &  rhs 
) [inline]

Division (element wise) of a matrix and a scalar, B(i,j) = s / A(i,j) returning a matrix expression

Definition at line 968 of file BinaryOperators.h.

References T.

template<class A, class T, unsigned int D, unsigned int D2, class R>
Expr< BinaryOpCopyR< DivOp< T >, SMatrix< T, D, D2, R >, Constant< A >, T >, T, D, D2, R > ROOT::Math::operator/ ( const SMatrix< T, D, D2, R > &  lhs,
const A rhs 
) [inline]

Division (element wise) of a matrix and a scalar, B(i,j) = A(i,j) / s returning a matrix expression

Definition at line 950 of file BinaryOperators.h.

References T.

template<class T, unsigned int D1, unsigned int D2, class R>
SMatrix< T, D1, D1, MatRepSym< T, D1 > > ROOT::Math::Similarity ( const SMatrix< T, D1, D2, R > &  lhs,
const SMatrix< T, D2, D2, MatRepSym< T, D2 > > &  rhs 
) [inline]

Similarity Matrix Product : B = U * A * U^T for A symmetric returning a symmetric matrix expression: $ B(i,j) = \sum_{k,l} U(i,k) * A(k,l) * U(j,l) $

Definition at line 715 of file MatrixFunctions.h.

References ROOT::Math::AssignSym::Evaluate(), and ROOT::Math::Transpose().

template<class T, unsigned int D, class R>
T ROOT::Math::Similarity ( const SMatrix< T, D, D, R > &  lhs,
const SVector< T, D > &  rhs 
) [inline]

Similarity Vector - Matrix Product: v^T * A * v returning a scalar value of type T $ s = \sum_{i,j} v(i) * A(i,j) * v(j)$

Definition at line 642 of file MatrixFunctions.h.

References ROOT::Math::Dot().

Referenced by TestRunner< NDIM1, NDIM2 >::test_smatrix_sym_kalman().

template<class T, unsigned int D1, unsigned int D2, class R>
SMatrix< T, D2, D2, MatRepSym< T, D2 > > ROOT::Math::SimilarityT ( const SMatrix< T, D1, D2, R > &  lhs,
const SMatrix< T, D1, D1, MatRepSym< T, D1 > > &  rhs 
) [inline]

Transpose Similarity Matrix Product : B = U^T * A * U for A symmetric returning a symmetric matrix expression: $ B(i,j) = \sum_{k,l} U(k,i) * A(k,l) * U(l,j) $

Definition at line 765 of file MatrixFunctions.h.

References ROOT::Math::AssignSym::Evaluate(), and ROOT::Math::Transpose().

Referenced by TestRunner< NDIM1, NDIM2 >::test_smatrix_sym_kalman().

template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Sqr< T >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::sqr ( const SMatrix< T, D, D2, R > &  rhs  )  [inline]

square of a matrix B(i,j) = A(i,j)*A(i,j) returning a matrix expression

Definition at line 251 of file UnaryOperators.h.

References T.

template<class T, unsigned int D, unsigned int D2, class R>
Expr< UnaryOp< Sqrt< T >, SMatrix< T, D, D2, R >, T >, T, D, D2, R > ROOT::Math::sqrt ( const SMatrix< T, D, D2, R > &  rhs  )  [inline]

square root of a matrix (element by element) m2(i,j) = sqrt ( m1(i,j) ) returning a matrix expression

Definition at line 325 of file UnaryOperators.h.

References T.

template<class T, unsigned int D, unsigned int D2, class R1, class R2>
Expr< BinaryOp< MulOp< T >, SMatrix< T, D, D2, R1 >, SMatrix< T, D, D2, R2 >, T >, T, D, D2, typename AddPolicy< T, D, D2, R1, R2 >::RepType > ROOT::Math::Times ( const SMatrix< T, D, D2, R1 > &  lhs,
const SMatrix< T, D, D2, R2 > &  rhs 
) [inline]

Element by element matrix multiplication C(i,j) = A(i,j)*B(i,j) returning a matrix expression. This is not a matrix-matrix multiplication and works only for matrices of the same dimensions.

Definition at line 653 of file BinaryOperators.h.

References T.

template<class T, unsigned int D1, unsigned int D2, class R>
Expr< TransposeOp< SMatrix< T, D1, D2, R >, T, D1, D2 >, T, D2, D1, typename TranspPolicy< T, D1, D2, R >::RepType > ROOT::Math::Transpose ( const SMatrix< T, D1, D2, R > &  rhs  )  [inline]

Matrix Transpose B(i,j) = A(j,i) returning a matrix expression

Definition at line 517 of file MatrixFunctions.h.

References T.

Referenced by ROOT::Math::Similarity(), and ROOT::Math::SimilarityT().


Generated on Tue Jul 5 16:09:42 2011 for ROOT_528-00b_version by  doxygen 1.5.1