00001
00002
00003
00004 #ifndef ROOT_Math_MatrixFunctions
00005 #define ROOT_Math_MatrixFunctions
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043 #ifndef ROOT_Math_BinaryOpPolicy
00044 #include "Math/BinaryOpPolicy.h"
00045 #endif
00046
00047 namespace ROOT {
00048
00049 namespace Math {
00050
00051
00052
00053 #ifdef XXX
00054
00055
00056
00057 template <class T, unsigned int D1, unsigned int D2, class R>
00058 SVector<T,D1> operator*(const SMatrix<T,D1,D2,R>& rhs, const SVector<T,D2>& lhs)
00059 {
00060 SVector<T,D1> tmp;
00061 for(unsigned int i=0; i<D1; ++i) {
00062 const unsigned int rpos = i*D2;
00063 for(unsigned int j=0; j<D2; ++j) {
00064 tmp[i] += rhs.apply(rpos+j) * lhs.apply(j);
00065 }
00066 }
00067 return tmp;
00068 }
00069 #endif
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079 template <unsigned int I>
00080 struct meta_row_dot {
00081 template <class A, class B>
00082 static inline typename A::value_type f(const A& lhs, const B& rhs,
00083 const unsigned int offset) {
00084 return lhs.apply(offset+I) * rhs.apply(I) + meta_row_dot<I-1>::f(lhs,rhs,offset);
00085 }
00086 };
00087
00088
00089
00090
00091
00092 template <>
00093 struct meta_row_dot<0> {
00094 template <class A, class B>
00095 static inline typename A::value_type f(const A& lhs, const B& rhs,
00096 const unsigned int offset) {
00097 return lhs.apply(offset) * rhs.apply(0);
00098 }
00099 };
00100
00101
00102
00103
00104 template <class Matrix, class Vector, unsigned int D2>
00105 class VectorMatrixRowOp {
00106 public:
00107
00108 VectorMatrixRowOp(const Matrix& lhs, const Vector& rhs) :
00109 lhs_(lhs), rhs_(rhs) {}
00110
00111
00112 ~VectorMatrixRowOp() {}
00113
00114
00115 inline typename Matrix::value_type apply(unsigned int i) const {
00116 return meta_row_dot<D2-1>::f(lhs_, rhs_, i*D2);
00117 }
00118
00119 protected:
00120 const Matrix& lhs_;
00121 const Vector& rhs_;
00122 };
00123
00124
00125
00126
00127
00128 template <unsigned int I>
00129 struct meta_col_dot {
00130 template <class Matrix, class Vector>
00131 static inline typename Matrix::value_type f(const Matrix& lhs, const Vector& rhs,
00132 const unsigned int offset) {
00133 return lhs.apply(Matrix::kCols*I+offset) * rhs.apply(I) +
00134 meta_col_dot<I-1>::f(lhs,rhs,offset);
00135 }
00136 };
00137
00138
00139
00140
00141
00142 template <>
00143 struct meta_col_dot<0> {
00144 template <class Matrix, class Vector>
00145 static inline typename Matrix::value_type f(const Matrix& lhs, const Vector& rhs,
00146 const unsigned int offset) {
00147 return lhs.apply(offset) * rhs.apply(0);
00148 }
00149 };
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159 template <class Vector, class Matrix, unsigned int D1>
00160 class VectorMatrixColOp {
00161 public:
00162
00163 VectorMatrixColOp(const Vector& lhs, const Matrix& rhs) :
00164 lhs_(lhs), rhs_(rhs) {}
00165
00166
00167 ~VectorMatrixColOp() {}
00168
00169
00170 inline typename Matrix::value_type apply(unsigned int i) const {
00171 return meta_col_dot<D1-1>::f(rhs_, lhs_, i);
00172 }
00173
00174 protected:
00175 const Vector& lhs_;
00176 const Matrix& rhs_;
00177 };
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188 template <class T, unsigned int D1, unsigned int D2, class R>
00189 inline VecExpr<VectorMatrixRowOp<SMatrix<T,D1,D2,R>,SVector<T,D2>, D2>, T, D1>
00190 operator*(const SMatrix<T,D1,D2,R>& lhs, const SVector<T,D2>& rhs) {
00191 typedef VectorMatrixRowOp<SMatrix<T,D1,D2,R>,SVector<T,D2>, D2> VMOp;
00192 return VecExpr<VMOp, T, D1>(VMOp(lhs,rhs));
00193 }
00194
00195
00196
00197
00198 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00199 inline VecExpr<VectorMatrixRowOp<SMatrix<T,D1,D2,R>, VecExpr<A,T,D2>, D2>, T, D1>
00200 operator*(const SMatrix<T,D1,D2,R>& lhs, const VecExpr<A,T,D2>& rhs) {
00201 typedef VectorMatrixRowOp<SMatrix<T,D1,D2,R>,VecExpr<A,T,D2>, D2> VMOp;
00202 return VecExpr<VMOp, T, D1>(VMOp(lhs,rhs));
00203 }
00204
00205
00206
00207
00208 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00209 inline VecExpr<VectorMatrixRowOp<Expr<A,T,D1,D2,R>, SVector<T,D2>, D2>, T, D1>
00210 operator*(const Expr<A,T,D1,D2,R>& lhs, const SVector<T,D2>& rhs) {
00211 typedef VectorMatrixRowOp<Expr<A,T,D1,D2,R>,SVector<T,D2>, D2> VMOp;
00212 return VecExpr<VMOp, T, D1>(VMOp(lhs,rhs));
00213 }
00214
00215
00216
00217
00218 template <class A, class B, class T, unsigned int D1, unsigned int D2, class R>
00219 inline VecExpr<VectorMatrixRowOp<Expr<A,T,D1,D2,R>, VecExpr<B,T,D2>, D2>, T, D1>
00220 operator*(const Expr<A,T,D1,D2,R>& lhs, const VecExpr<B,T,D2>& rhs) {
00221 typedef VectorMatrixRowOp<Expr<A,T,D1,D2,R>,VecExpr<B,T,D2>, D2> VMOp;
00222 return VecExpr<VMOp, T, D1>(VMOp(lhs,rhs));
00223 }
00224
00225
00226
00227
00228 template <class T, unsigned int D1, unsigned int D2, class R>
00229 inline VecExpr<VectorMatrixColOp<SVector<T,D1>, SMatrix<T,D1,D2,R>, D1>, T, D2>
00230 operator*(const SVector<T,D1>& lhs, const SMatrix<T,D1,D2,R>& rhs) {
00231 typedef VectorMatrixColOp<SVector<T,D1>, SMatrix<T,D1,D2,R>, D1> VMOp;
00232 return VecExpr<VMOp, T, D2>(VMOp(lhs,rhs));
00233 }
00234
00235
00236
00237
00238 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00239 inline VecExpr<VectorMatrixColOp<SVector<T,D1>, Expr<A,T,D1,D2,R>, D1>, T, D2>
00240 operator*(const SVector<T,D1>& lhs, const Expr<A,T,D1,D2,R>& rhs) {
00241 typedef VectorMatrixColOp<SVector<T,D1>, Expr<A,T,D1,D2,R>, D1> VMOp;
00242 return VecExpr<VMOp, T, D2>(VMOp(lhs,rhs));
00243 }
00244
00245
00246
00247
00248 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00249 inline VecExpr<VectorMatrixColOp<VecExpr<A,T,D1>, SMatrix<T,D1,D2,R>, D1>, T, D2>
00250 operator*(const VecExpr<A,T,D1>& lhs, const SMatrix<T,D1,D2,R>& rhs) {
00251 typedef VectorMatrixColOp<VecExpr<A,T,D1>, SMatrix<T,D1,D2,R>, D1> VMOp;
00252 return VecExpr<VMOp, T, D2>(VMOp(lhs,rhs));
00253 }
00254
00255
00256
00257
00258 template <class A, class B, class T, unsigned int D1, unsigned int D2, class R>
00259 inline VecExpr<VectorMatrixColOp<VecExpr<A,T,D1>, Expr<B,T,D1,D2,R>, D1>, T, D2>
00260 operator*(const VecExpr<A,T,D1>& lhs, const Expr<B,T,D1,D2,R>& rhs) {
00261 typedef VectorMatrixColOp<VecExpr<A,T,D1>, Expr<B,T,D1,D2,R>, D1> VMOp;
00262 return VecExpr<VMOp, T, D2>(VMOp(lhs,rhs));
00263 }
00264
00265
00266
00267
00268 template <unsigned int I>
00269 struct meta_matrix_dot {
00270
00271 template <class MatrixA, class MatrixB>
00272 static inline typename MatrixA::value_type f(const MatrixA& lhs,
00273 const MatrixB& rhs,
00274 const unsigned int offset) {
00275 return lhs.apply(offset/MatrixB::kCols*MatrixA::kCols + I) *
00276 rhs.apply(MatrixB::kCols*I + offset%MatrixB::kCols) +
00277 meta_matrix_dot<I-1>::f(lhs,rhs,offset);
00278 }
00279
00280
00281 template <class MatrixA, class MatrixB>
00282 static inline typename MatrixA::value_type g(const MatrixA& lhs,
00283 const MatrixB& rhs,
00284 unsigned int i,
00285 unsigned int j) {
00286 return lhs(i, I) * rhs(I , j) +
00287 meta_matrix_dot<I-1>::g(lhs,rhs,i,j);
00288 }
00289 };
00290
00291
00292
00293
00294
00295 template <>
00296 struct meta_matrix_dot<0> {
00297
00298 template <class MatrixA, class MatrixB>
00299 static inline typename MatrixA::value_type f(const MatrixA& lhs,
00300 const MatrixB& rhs,
00301 const unsigned int offset) {
00302 return lhs.apply(offset/MatrixB::kCols*MatrixA::kCols) *
00303 rhs.apply(offset%MatrixB::kCols);
00304 }
00305
00306
00307 template <class MatrixA, class MatrixB>
00308 static inline typename MatrixA::value_type g(const MatrixA& lhs,
00309 const MatrixB& rhs,
00310 unsigned int i, unsigned int j) {
00311 return lhs(i,0) * rhs(0,j);
00312 }
00313
00314 };
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324 template <class MatrixA, class MatrixB, class T, unsigned int D>
00325 class MatrixMulOp {
00326 public:
00327
00328 MatrixMulOp(const MatrixA& lhs, const MatrixB& rhs) :
00329 lhs_(lhs), rhs_(rhs) {}
00330
00331
00332 ~MatrixMulOp() {}
00333
00334
00335 inline T apply(unsigned int i) const {
00336 return meta_matrix_dot<D-1>::f(lhs_, rhs_, i);
00337 }
00338
00339 inline T operator() (unsigned int i, unsigned j) const {
00340 return meta_matrix_dot<D-1>::g(lhs_, rhs_, i, j);
00341 }
00342
00343 inline bool IsInUse (const T * p) const {
00344 return lhs_.IsInUse(p) || rhs_.IsInUse(p);
00345 }
00346
00347
00348 protected:
00349 const MatrixA& lhs_;
00350 const MatrixB& rhs_;
00351 };
00352
00353
00354
00355
00356
00357
00358
00359
00360
00361
00362
00363 template < class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00364 inline Expr<MatrixMulOp<SMatrix<T,D1,D,R1>, SMatrix<T,D,D2,R2>,T,D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00365 operator*(const SMatrix<T,D1,D,R1>& lhs, const SMatrix<T,D,D2,R2>& rhs) {
00366 typedef MatrixMulOp<SMatrix<T,D1,D,R1>, SMatrix<T,D,D2,R2>, T,D> MatMulOp;
00367 return Expr<MatMulOp,T,D1,D2,
00368 typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00369 }
00370
00371
00372
00373
00374 template <class A, class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00375 inline Expr<MatrixMulOp<SMatrix<T,D1,D,R1>, Expr<A,T,D,D2,R2>,T,D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00376 operator*(const SMatrix<T,D1,D,R1>& lhs, const Expr<A,T,D,D2,R2>& rhs) {
00377 typedef MatrixMulOp<SMatrix<T,D1,D,R1>, Expr<A,T,D,D2,R2>,T,D> MatMulOp;
00378 return Expr<MatMulOp,T,D1,D2,
00379 typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00380 }
00381
00382
00383
00384
00385 template <class A, class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00386 inline Expr<MatrixMulOp<Expr<A,T,D1,D,R1>, SMatrix<T,D,D2,R2>,T,D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00387 operator*(const Expr<A,T,D1,D,R1>& lhs, const SMatrix<T,D,D2,R2>& rhs) {
00388 typedef MatrixMulOp<Expr<A,T,D1,D,R1>, SMatrix<T,D,D2,R2>,T,D> MatMulOp;
00389 return Expr<MatMulOp,T,D1,D2,
00390 typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00391 }
00392
00393
00394
00395
00396 template <class A, class B, class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00397 inline Expr<MatrixMulOp<Expr<A,T,D1,D,R1>, Expr<B,T,D,D2,R2>,T,D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00398 operator*(const Expr<A,T,D1,D,R1>& lhs, const Expr<B,T,D,D2,R2>& rhs) {
00399 typedef MatrixMulOp<Expr<A,T,D1,D,R1>, Expr<B,T,D,D2,R2>, T,D> MatMulOp;
00400 return Expr<MatMulOp,T,D1,D2,typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00401 }
00402
00403
00404
00405 #ifdef XXX
00406
00407
00408
00409 template <class MatrixA, class MatrixB, unsigned int D>
00410 class MatrixMulOp {
00411 public:
00412
00413 MatrixMulOp(const MatrixA& lhs, const MatrixB& rhs) :
00414 lhs_(lhs), rhs_(rhs) {}
00415
00416
00417 ~MatrixMulOp() {}
00418
00419
00420 inline typename MatrixA::value_type apply(unsigned int i) const {
00421 return meta_matrix_dot<D-1>::f(lhs_, rhs_, i);
00422 }
00423
00424 protected:
00425 const MatrixA& lhs_;
00426 const MatrixB& rhs_;
00427 };
00428
00429
00430
00431
00432
00433 template < class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00434 inline Expr<MatrixMulOp<SMatrix<T,D1,D,R1>, SMatrix<T,D,D2,R2>, D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00435 operator*(const SMatrix<T,D1,D,R1>& lhs, const SMatrix<T,D,D2,R2>& rhs) {
00436 typedef MatrixMulOp<SMatrix<T,D1,D,R1>, SMatrix<T,D,D2,R2>, D> MatMulOp;
00437 return Expr<MatMulOp,T,D1,D2,typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00438 }
00439
00440
00441
00442
00443 template <class A, class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00444 inline Expr<MatrixMulOp<SMatrix<T,D1,D,R1>, Expr<A,T,D,D2,R2>, D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00445 operator*(const SMatrix<T,D1,D,R1>& lhs, const Expr<A,T,D,D2,R2>& rhs) {
00446 typedef MatrixMulOp<SMatrix<T,D1,D,R1>, Expr<A,T,D,D2,R2>, D> MatMulOp;
00447 return Expr<MatMulOp,T,D1,D2,typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00448 }
00449
00450
00451
00452
00453 template <class A, class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00454 inline Expr<MatrixMulOp<Expr<A,T,D1,D,R1>, SMatrix<T,D,D2,R2>, D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00455 operator*(const Expr<A,T,D1,D,R1>& lhs, const SMatrix<T,D,D2,R2>& rhs) {
00456 typedef MatrixMulOp<Expr<A,T,D1,D,R1>, SMatrix<T,D,D2,R2>, D> MatMulOp;
00457 return Expr<MatMulOp,T,D1,D2,typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00458 }
00459
00460
00461
00462
00463 template <class A, class B, class T, unsigned int D1, unsigned int D, unsigned int D2, class R1, class R2>
00464 inline Expr<MatrixMulOp<Expr<A,T,D1,D,R1>, Expr<B,T,D,D2,R2>, D>, T, D1, D2, typename MultPolicy<T,R1,R2>::RepType>
00465 operator*(const Expr<A,T,D1,D,R1>& lhs, const Expr<B,T,D,D2,R2>& rhs) {
00466 typedef MatrixMulOp<Expr<A,T,D1,D,R1>, Expr<B,T,D,D2,R2>, D> MatMulOp;
00467 return Expr<MatMulOp,T,D1,D2,typename MultPolicy<T,R1,R2>::RepType>(MatMulOp(lhs,rhs));
00468 }
00469 #endif
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479 template <class Matrix, class T, unsigned int D1, unsigned int D2=D1>
00480 class TransposeOp {
00481 public:
00482
00483 TransposeOp( const Matrix& rhs) :
00484 rhs_(rhs) {}
00485
00486
00487 ~TransposeOp() {}
00488
00489
00490 inline T apply(unsigned int i) const {
00491 return rhs_.apply( (i%D1)*D2 + i/D1);
00492 }
00493 inline T operator() (unsigned int i, unsigned j) const {
00494 return rhs_( j, i);
00495 }
00496
00497 inline bool IsInUse (const T * p) const {
00498 return rhs_.IsInUse(p);
00499 }
00500
00501 protected:
00502 const Matrix& rhs_;
00503 };
00504
00505
00506
00507
00508
00509
00510
00511
00512
00513
00514
00515 template <class T, unsigned int D1, unsigned int D2, class R>
00516 inline Expr<TransposeOp<SMatrix<T,D1,D2,R>,T,D1,D2>, T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>
00517 Transpose(const SMatrix<T,D1,D2, R>& rhs) {
00518 typedef TransposeOp<SMatrix<T,D1,D2,R>,T,D1,D2> MatTrOp;
00519
00520 return Expr<MatTrOp, T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>(MatTrOp(rhs));
00521 }
00522
00523
00524
00525
00526 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00527 inline Expr<TransposeOp<Expr<A,T,D1,D2,R>,T,D1,D2>, T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>
00528 Transpose(const Expr<A,T,D1,D2,R>& rhs) {
00529 typedef TransposeOp<Expr<A,T,D1,D2,R>,T,D1,D2> MatTrOp;
00530
00531 return Expr<MatTrOp, T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>(MatTrOp(rhs));
00532 }
00533
00534
00535 #ifdef ENABLE_TEMPORARIES_TRANSPOSE
00536
00537
00538
00539
00540
00541 template <class T, unsigned int D1, unsigned int D2, class R>
00542 inline SMatrix< T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>
00543 Transpose(const SMatrix<T,D1,D2, R>& rhs) {
00544 typedef TransposeOp<SMatrix<T,D1,D2,R>,T,D1,D2> MatTrOp;
00545
00546 return SMatrix< T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>
00547 ( Expr<MatTrOp, T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>(MatTrOp(rhs)) );
00548 }
00549
00550
00551
00552
00553 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00554 inline SMatrix< T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>
00555 Transpose(const Expr<A,T,D1,D2,R>& rhs) {
00556 typedef TransposeOp<Expr<A,T,D1,D2,R>,T,D1,D2> MatTrOp;
00557
00558 return SMatrix< T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>
00559 ( Expr<MatTrOp, T, D2, D1, typename TranspPolicy<T,D1,D2,R>::RepType>(MatTrOp(rhs)) );
00560 }
00561
00562 #endif
00563
00564
00565 #ifdef OLD
00566
00567
00568
00569 template <class T, unsigned int D, class R>
00570 inline T Product(const SMatrix<T,D,D,R>& lhs, const SVector<T,D>& rhs) {
00571 return Dot(rhs, lhs * rhs);
00572 }
00573
00574
00575
00576
00577 template <class T, unsigned int D, class R>
00578 inline T Product(const SVector<T,D>& lhs, const SMatrix<T,D,D,R>& rhs) {
00579 return Dot(lhs, rhs * lhs);
00580 }
00581
00582
00583
00584
00585 template <class A, class T, unsigned int D, class R>
00586 inline T Product(const SMatrix<T,D,D,R>& lhs, const VecExpr<A,T,D>& rhs) {
00587 return Dot(rhs, lhs * rhs);
00588 }
00589
00590
00591
00592
00593 template <class A, class T, unsigned int D, class R>
00594 inline T Product(const VecExpr<A,T,D>& lhs, const SMatrix<T,D,D,R>& rhs) {
00595 return Dot(lhs, rhs * lhs);
00596 }
00597
00598
00599
00600
00601 template <class A, class T, unsigned int D, class R>
00602 inline T Product(const SVector<T,D>& lhs, const Expr<A,T,D,D,R>& rhs) {
00603 return Dot(lhs, rhs * lhs);
00604 }
00605
00606
00607
00608
00609 template <class A, class T, unsigned int D, class R>
00610 inline T Product(const Expr<A,T,D,D,R>& lhs, const SVector<T,D>& rhs) {
00611 return Dot(rhs, lhs * rhs);
00612 }
00613
00614
00615
00616
00617 template <class A, class B, class T, unsigned int D, class R>
00618 inline T Product(const Expr<A,T,D,D,R>& lhs, const VecExpr<B,T,D>& rhs) {
00619 return Dot(rhs, lhs * rhs);
00620 }
00621
00622
00623
00624
00625 template <class A, class B, class T, unsigned int D, class R>
00626 inline T Product(const VecExpr<A,T,D>& lhs, const Expr<B,T,D,D,R>& rhs) {
00627 return Dot(lhs, rhs * lhs);
00628 }
00629 #endif
00630
00631
00632
00633
00634
00635
00636
00637
00638
00639
00640
00641 template <class T, unsigned int D, class R>
00642 inline T Similarity(const SMatrix<T,D,D,R>& lhs, const SVector<T,D>& rhs) {
00643 return Dot(rhs, lhs * rhs);
00644 }
00645
00646
00647
00648
00649 template <class T, unsigned int D, class R>
00650 inline T Similarity(const SVector<T,D>& lhs, const SMatrix<T,D,D,R>& rhs) {
00651 return Dot(lhs, rhs * lhs);
00652 }
00653
00654
00655
00656
00657 template <class A, class T, unsigned int D, class R>
00658 inline T Similarity(const SMatrix<T,D,D,R>& lhs, const VecExpr<A,T,D>& rhs) {
00659 return Dot(rhs, lhs * rhs);
00660 }
00661
00662
00663
00664
00665 template <class A, class T, unsigned int D, class R>
00666 inline T Similarity(const VecExpr<A,T,D>& lhs, const SMatrix<T,D,D,R>& rhs) {
00667 return Dot(lhs, rhs * lhs);
00668 }
00669
00670
00671
00672
00673 template <class A, class T, unsigned int D, class R>
00674 inline T Similarity(const SVector<T,D>& lhs, const Expr<A,T,D,D,R>& rhs) {
00675 return Dot(lhs, rhs * lhs);
00676 }
00677
00678
00679
00680
00681 template <class A, class T, unsigned int D, class R>
00682 inline T Similarity(const Expr<A,T,D,D,R>& lhs, const SVector<T,D>& rhs) {
00683 return Dot(rhs, lhs * rhs);
00684 }
00685
00686
00687
00688
00689 template <class A, class B, class T, unsigned int D, class R>
00690 inline T Similarity(const Expr<A,T,D,D,R>& lhs, const VecExpr<B,T,D>& rhs) {
00691 return Dot(rhs, lhs * rhs);
00692 }
00693
00694
00695
00696
00697 template <class A, class B, class T, unsigned int D, class R>
00698 inline T Similarity(const VecExpr<A,T,D>& lhs, const Expr<B,T,D,D,R>& rhs) {
00699 return Dot(lhs, rhs * lhs);
00700 }
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714 template <class T, unsigned int D1, unsigned int D2, class R>
00715 inline SMatrix<T,D1,D1,MatRepSym<T,D1> > Similarity(const SMatrix<T,D1,D2,R>& lhs, const SMatrix<T,D2,D2,MatRepSym<T,D2> >& rhs) {
00716 SMatrix<T,D1,D2, MatRepStd<T,D1,D2> > tmp = lhs * rhs;
00717 typedef SMatrix<T,D1,D1,MatRepSym<T,D1> > SMatrixSym;
00718 SMatrixSym mret;
00719 AssignSym::Evaluate(mret, tmp * Transpose(lhs) );
00720 return mret;
00721 }
00722
00723
00724
00725
00726
00727
00728 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00729 inline SMatrix<T,D1,D1,MatRepSym<T,D1> > Similarity(const Expr<A,T,D1,D2,R>& lhs, const SMatrix<T,D2,D2,MatRepSym<T,D2> >& rhs) {
00730 SMatrix<T,D1,D2,MatRepStd<T,D1,D2> > tmp = lhs * rhs;
00731 typedef SMatrix<T,D1,D1,MatRepSym<T,D1> > SMatrixSym;
00732 SMatrixSym mret;
00733 AssignSym::Evaluate(mret, tmp * Transpose(lhs) );
00734 return mret;
00735 }
00736
00737 #ifdef XXX
00738
00739
00740
00741
00742
00743 template <class T, unsigned int D1>
00744 inline SMatrix<T,D1,D1,MatRepSym<T,D1> > Similarity(const SMatrix<T,D1,D1,MatRepSym<T,D1> >& lhs, const SMatrix<T,D1,D1,MatRepSym<T,D1> >& rhs) {
00745 SMatrix<T,D1,D1, MatRepStd<T,D1,D1> > tmp = lhs * rhs;
00746 typedef SMatrix<T,D1,D1,MatRepSym<T,D1> > SMatrixSym;
00747 SMatrixSym mret;
00748 AssignSym::Evaluate(mret, tmp * lhs );
00749 return mret;
00750 }
00751 #endif
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764 template <class T, unsigned int D1, unsigned int D2, class R>
00765 inline SMatrix<T,D2,D2,MatRepSym<T,D2> > SimilarityT(const SMatrix<T,D1,D2,R>& lhs, const SMatrix<T,D1,D1,MatRepSym<T,D1> >& rhs) {
00766 SMatrix<T,D1,D2,MatRepStd<T,D1,D2> > tmp = rhs * lhs;
00767 typedef SMatrix<T,D2,D2,MatRepSym<T,D2> > SMatrixSym;
00768 SMatrixSym mret;
00769 AssignSym::Evaluate(mret, Transpose(lhs) * tmp );
00770 return mret;
00771 }
00772
00773
00774
00775
00776
00777
00778 template <class A, class T, unsigned int D1, unsigned int D2, class R>
00779 inline SMatrix<T,D2,D2,MatRepSym<T,D2> > SimilarityT(const Expr<A,T,D1,D2,R>& lhs, const SMatrix<T,D1,D1,MatRepSym<T,D1> >& rhs) {
00780 SMatrix<T,D1,D2,MatRepStd<T,D1,D2> > tmp = rhs * lhs;
00781 typedef SMatrix<T,D2,D2,MatRepSym<T,D2> > SMatrixSym;
00782 SMatrixSym mret;
00783 AssignSym::Evaluate(mret, Transpose(lhs) * tmp );
00784 return mret;
00785 }
00786
00787
00788
00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809
00810
00811
00812
00813 template <class Vector1, class Vector2>
00814 class TensorMulOp {
00815 public:
00816
00817 TensorMulOp( const Vector1 & lhs, const Vector2 & rhs) :
00818 lhs_(lhs),
00819 rhs_(rhs) {}
00820
00821
00822 ~TensorMulOp() {}
00823
00824
00825 inline typename Vector1::value_type apply(unsigned int i) const {
00826 return lhs_.apply( i/ Vector2::kSize) * rhs_.apply( i % Vector2::kSize );
00827 }
00828 inline typename Vector1::value_type operator() (unsigned int i, unsigned j) const {
00829 return lhs_.apply(i) * rhs_.apply(j);
00830 }
00831
00832 inline bool IsInUse (const typename Vector1::value_type * ) const {
00833 return false;
00834 }
00835
00836
00837 protected:
00838
00839 const Vector1 & lhs_;
00840 const Vector2 & rhs_;
00841
00842 };
00843
00844
00845
00846
00847
00848
00849
00850
00851
00852
00853 #ifndef _WIN32
00854
00855
00856
00857
00858
00859
00860 template <class T, unsigned int D1, unsigned int D2>
00861 inline Expr<TensorMulOp<SVector<T,D1>, SVector<T,D2> >, T, D1, D2 >
00862 TensorProd(const SVector<T,D1>& lhs, const SVector<T,D2>& rhs) {
00863 typedef TensorMulOp<SVector<T,D1>, SVector<T,D2> > TVMulOp;
00864 return Expr<TVMulOp,T,D1,D2>(TVMulOp(lhs,rhs));
00865 }
00866
00867
00868
00869
00870 template <class T, unsigned int D1, unsigned int D2, class A>
00871 inline Expr<TensorMulOp<VecExpr<A,T,D1>, SVector<T,D2> >, T, D1, D2 >
00872 TensorProd(const VecExpr<A,T,D1>& lhs, const SVector<T,D2>& rhs) {
00873 typedef TensorMulOp<VecExpr<A,T,D1>, SVector<T,D2> > TVMulOp;
00874 return Expr<TVMulOp,T,D1,D2>(TVMulOp(lhs,rhs));
00875 }
00876
00877
00878
00879
00880 template <class T, unsigned int D1, unsigned int D2, class A>
00881 inline Expr<TensorMulOp<SVector<T,D1>, VecExpr<A,T,D2> >, T, D1, D2 >
00882 TensorProd(const SVector<T,D1>& lhs, const VecExpr<A,T,D2>& rhs) {
00883 typedef TensorMulOp<SVector<T,D1>, VecExpr<A,T,D2> > TVMulOp;
00884 return Expr<TVMulOp,T,D1,D2>(TVMulOp(lhs,rhs));
00885 }
00886
00887
00888
00889
00890
00891 template <class T, unsigned int D1, unsigned int D2, class A, class B>
00892 inline Expr<TensorMulOp<VecExpr<A,T,D1>, VecExpr<B,T,D2> >, T, D1, D2 >
00893 TensorProd(const VecExpr<A,T,D1>& lhs, const VecExpr<B,T,D2>& rhs) {
00894 typedef TensorMulOp<VecExpr<A,T,D1>, VecExpr<B,T,D2> > TVMulOp;
00895 return Expr<TVMulOp,T,D1,D2>(TVMulOp(lhs,rhs));
00896 }
00897
00898 #endif
00899 #ifdef _WIN32
00900
00901
00902
00903
00904
00905 template <class T, unsigned int D1, unsigned int D2>
00906 inline SMatrix<T,D1,D2> TensorProd(const SVector<T,D1>& lhs, const SVector<T,D2>& rhs) {
00907 SMatrix<T,D1,D2> tmp;
00908 for (unsigned int i=0; i< D1; ++i)
00909 for (unsigned int j=0; j< D2; ++j) {
00910 tmp(i,j) = lhs[i]*rhs[j];
00911 }
00912
00913 return tmp;
00914 }
00915
00916
00917
00918 template <class T, unsigned int D1, unsigned int D2, class A>
00919 inline SMatrix<T,D1,D2> TensorProd(const VecExpr<A,T,D1>& lhs, const SVector<T,D2>& rhs) {
00920 SMatrix<T,D1,D2> tmp;
00921 for (unsigned int i=0; i< D1; ++i)
00922 for (unsigned int j=0; j< D2; ++j)
00923 tmp(i,j) = lhs.apply(i) * rhs.apply(j);
00924
00925 return tmp;
00926 }
00927
00928
00929
00930 template <class T, unsigned int D1, unsigned int D2, class A>
00931 inline SMatrix<T,D1,D2> TensorProd(const SVector<T,D1>& lhs, const VecExpr<A,T,D2>& rhs) {
00932 SMatrix<T,D1,D2> tmp;
00933 for (unsigned int i=0; i< D1; ++i)
00934 for (unsigned int j=0; j< D2; ++j)
00935 tmp(i,j) = lhs.apply(i) * rhs.apply(j);
00936
00937 return tmp;
00938 }
00939
00940
00941
00942
00943
00944 template <class T, unsigned int D1, unsigned int D2, class A, class B>
00945 inline SMatrix<T,D1,D2 > TensorProd(const VecExpr<A,T,D1>& lhs, const VecExpr<B,T,D2>& rhs) {
00946 SMatrix<T,D1,D2> tmp;
00947 for (unsigned int i=0; i< D1; ++i)
00948 for (unsigned int j=0; j< D2; ++j)
00949 tmp(i,j) = lhs.apply(i) * rhs.apply(j);
00950
00951 return tmp;
00952 }
00953
00954
00955 #endif
00956
00957
00958
00959
00960
00961 template <class T, unsigned int D>
00962 bool SolveChol( SMatrix<T, D, D, MatRepSym<T, D> > & mat, SVector<T, D> & vec ) {
00963 CholeskyDecomp<T, D> decomp(mat);
00964 return decomp.Solve(vec);
00965 }
00966
00967
00968
00969 template <class T, unsigned int D>
00970 SVector<T,D> SolveChol( const SMatrix<T, D, D, MatRepSym<T, D> > & mat, const SVector<T, D> & vec, int & ifail ) {
00971 SMatrix<T, D, D, MatRepSym<T, D> > atmp(mat);
00972 SVector<T,D> vret(vec);
00973 bool ok = SolveChol( atmp, vret);
00974 ifail = (ok) ? 0 : -1;
00975 return vret;
00976 }
00977
00978
00979
00980 }
00981
00982 }
00983
00984
00985 #endif