FRagment Separator FRS
FRagment Separator FRS
(technical drawings)
Experimental site at S2 (top view)
Experimental site at S2 (side view)
Experimental site at S4 (top view)
FRS-target
FRS-S1
FRS-S2
FRS-S3
FRS-S4
Aufbau-FRS-S1-S4
Aufbau-FRS-S1-S4 (3D)
Projectile Fragmentation and Fission
luminosity =
primary beam intensity/s
* target atoms/cm
2
208
Pb: 1.3 g/cm
2
→ 3.8*10
21
target atoms/cm
2
9
Be: 1.0 g/cm
2
→ 6.7*10
22
target atoms/cm
2
secondary beam intensity [s
-1
] ≈ luminosity [s
-1
cm
-2
] * fragmentation cross section [cm
2
]
more details: nuclear reaction rate
present
132
Sn beam intensity: 5.8*10
4
particles/s
max. theo.
132
Sn beam intensity: 8.7*10
5
particles/s
The optimum thickness of the production target is limited by the loss of fragments due to secondary reactions
more details: optimization of the target thickness
For
projectiles
with mass number A
1
=
and
target nuclei
with mass number A
2
=
the
nuclear radii
and
total reaction cross section
are
R
1
=
fm
C
1
=
fm
σ
reac
=
b
R
2
=
fm
C
2
=
fm
R
int
=
fm
Projectile fragmentation cross sections (EPAX-calculation)
Production cross sections for Ni-isotopes
Production cross sections for Sn-isotopes
Experimental cross sections from fragmentation and fission of
238
U
GSI - RIKEN (pdf-file)
RIKEN:
238
U+
9
Be at 345AMeV
RIKEN:
238
U+
208
Pb at 345AMeV
Yields for in-flight beams (200-400 MeV/u)
RIA-project
factor (RIA-project/GSI)~10
4
(fragmentation)
Secondary beam rates after FRS (examples)
FRS-separator
Separation method
Kinematics of projectile fragmentation and fission
Momentum and Angular Spread (fragmentation, fission)
Momentum spread Δp/p (fragmentation, fission)
light rays:
achromatic / monoenergetic separation
achromatic / monoenergetic separation
19
Ne at 600AMeV
achromatic / monoenergetic separation
40
Ar 50AMeV + Ta/Al
Bρ-ΔE-Bρ separation for different degrader thicknesses
Separation of fission fragments at different energies (
190
W, d/R=0.5)
fragments are lost in the degrader (etc) due to nuclear reactions
Beam attenuation: operation domain of the Bρ-ΔE-Bρ separation
Beam attenuation = 1 - nuclear reaction rate
Beam attenuation in plastic
more details for thick target experiments
Highly-Charged Ions
Highly-charged ions at relativistic energies
Highly-charged ions at relativistic energies: 950MeV/u versus 160MeV/u
Charge state population versus beam energy (H.Weick)
Standard FRS detectors
C. Nociforo: standard FRS detectors
R. Janik: Time projection chamber
M. Winkler: From FRS to Super-FRS
P. Boutachkov: Standard detectors for particle identification at PreSPEC
H. Stelzer: "Multiwire chambers with a two-stage gas amplification"
NIM A310, 103 (1991)
FRS-training and Publications
FRS training (2010):
The GSI projectile fragment separator (FRS): a proposal for the SIS-ESR experimental programme (1987)
H. Geissel et al.
The GSI projectile fragment separator (FRS): a versatile magnetic system for relativistic heavy ions
H. Geissel et al. NIM B70, 286 (1992)
Einfluss der Umladung beim Abbremsen von Schwerionen im Energiebereich (100-1000) MeV/u
H. Weick, PhD thesis
Rare ISotopes INvestigation at GSI (RISING) using gamma-ray spectroscopy at relativistic energies
H.J. Wollersheim et al. NIM A537, 637 (2005)
last update: 7.2.2011 Hans-Juergen Wollersheim
HJW